{ "cells": [ { "cell_type": "markdown", "id": "9cb0b5ed", "metadata": {}, "source": [ "% Some modifications to table style\n", "\n", "\n", "Block diagram of AI\n", "==========\n", "\n", "\n", "## Knowledge representation\n", "\n", "- Logical rules: A database of logical relationships of concepts.\n", "- Semantic network: A graph consisting of concepts as nodes and their relations as vertices. The semantic network can also represent the data in logical database, but has greater expressiveness.\n", "- Frame representation: A frame is a record containing many attributes related to the real world objects. It would be an object in the object oriented language. The connections between frames can create a graph like structures.\n", "\n", "\n", "```{figure} figures/semanticNet.svg\n", "---\n", "width: 250px\n", "align: center\n", "name: fig:cyclicraph\n", "---\n", "\n", "An example of semantic network. It shows that Robin is a bird with rusty and red color. Birds are animals and they have wings. Birds are also a subclass of vertebrates.\n", "```\n", "\n", "\n", "```{figure} figures/LogicalFrames.svg\n", "---\n", "width: 400px\n", "align: center\n", "name: fig:cyclicraph\n", "---\n", "\n", "An example of Logical frame reprentation of knowledge. The notation is borrowed from object oriented programming methods. It is a semantic network which is enriched with attributes.\n", "```\n", "\n", "\n", "The Greek philosopher Aristotle defined a framework of rational thinking by defining logical syllogisms, the patterns for arguments which always produces correct conclusions, provided that the premises are correct. Much later, it was proposed that an artificial machine could use these kinds of logical rules and the database of premises to draw conclusions. The premises and the rules creates a logical database and a program can use it to make queries to find out if some statements are true or false. Many AI systems are made using this approach. Practical problems are that it is a lot of work to encode the complete set of premises and logical rules of a practical case into the database, and solving complex queries may need too much computational resources to be efficient. In addition the traditional logic does not support the concept of uncertainty.\n", "\n", "\n", "### Logics databases\n", "\n", "- Inference engine: A program which can proof logical theorems and search true sentences from the knowledge database.\n", "- Resolution: A complete theorem proofing mehod for propositional logic.\n", "- [Backward chaining](https://en.wikipedia.org/wiki/Backward_chaining) starts from the goals or hypothesis to be proved and finds out if the data supports the hypothesis.\n", "- [Forward chaining](https://en.wikipedia.org/wiki/Forward_chaining) starts from the known facts and finds out new true facts until the hypothesis is proved or find not provable.\n", "- [Belief network](https://towardsdatascience.com/introduction-to-bayesian-belief-networks-c012e3f59f1b) is a graph expressing conditional dependensies between statements. The network softens the dependencies shown in the semantic network. The probability of the hypothesis being true can be solved from the network using Bayes Rule.\n", "\n", "## Classical AI:\n", "\n", "Expert systems were supposed to be able to make decisions on behalf of a person. They consisted of a large number of logical rules stored in the knowledge database, which was used to resolve true statements based on the facts perceived and the rules stored. They are still used in certain applications, like in a bird recognition system [Luontoportti](https://www.luontoportti.fi).\n", "\n", "The bird species can be recognized by searching true statements from the database of logical rules. Each observation rules out part of the possible species.\n", "\n", "\n", " If (color is white) (A)\n", " and (wings are dark) (B)\n", " and (size equals to crow) (C)\n", " and (circulates in the air) (D)\n", " and (swims in water) (E)\n", " then it is a seagull (Q)\n", "\n", "The database above is based on logical syllogisms, defined by Aristoteles. It can be also described with more mathematical notation as follows:\n", "\n", "$$\n", " A \\wedge B \\wedge C \\wedge D \\wedge E \\rightarrow Q\n", "$$\n", "\n", "The knowledge database or knowledge base (KB) of [Luontoportti](www.luontoportti.fi) is build in the opposite direction though using simple logical rules as follows:\n", "\n", "$$\n", "\\begin{eqnarray}\n", " \\mathrm{KB} = ( Q &\\rightarrow& A, \\\\\n", " Q &\\rightarrow& B, \\\\\n", " Q &\\rightarrow& C, \\\\\n", " Q &\\rightarrow& D, \\\\\n", " Q &\\rightarrow& E )\n", "\\end{eqnarray}\n", "$$\n", "\n", "The inference shown above can be made from the KB using propositional logics, for example a method called [resolution](https://en.wikipedia.org/wiki/Resolution_(logic)). Using resolution, the validity of a sentence under a set of axioms can be proven. This means that the by logical inference, the system can proof if the observations match to the hypothesis, that the bird was seagull or not.\n", "\n", "The knowledge database above can be used in both directions.\n", "\n", "- If we know the species, we can find out the properties, for examples it can be seen that seagulls are white. This kind of inference is called as *forward chaining*, or *prediction*, because it predicts the properties or perceptions based on the species. Example in the medical field would be to describe the symptoms when the diagnosis is known.\n", "- If we on the other hand know the perceptions, we can use the database to find out the species where the observations fit. This kind of inference is called as *backward chaining* or *diagnostics'. In medical field this is used for diagnosing the cause, the disease, when the symptoms are known.\n", "\n", "The inference using logics KB is carried out by searching. Exhaustive search by trying all possible solutions is the simplest method, but it uses plenty of resources and is unfeasible in most practical databases.\n", "\n", "A Prolog programing language was made for encoding logical rules in a knowledge database and then proofing theorems and searching solutions from it, as shown in the following Prolog example:\n", "\n", "\n", "```prolog\n", "mother_child(trude, sally).\n", " \n", "father_child(tom, sally).\n", "father_child(tom, erica).\n", "father_child(mike, tom).\n", " \n", "sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).\n", " \n", "parent_child(X, Y) :- father_child(X, Y).\n", "parent_child(X, Y) :- mother_child(X, Y).\n", "```\n", "\n", "### Probability\n", "\n", "Medical diagnosis, current care guidelines (käypähoitosuositukset)\n", "\n", "The symptoms for having a stroke or TIA\n", "- One sided face paralysis\n", "- difficulties to speak (afasia)\n", "- one eye vision problems\n", "- nausea\n", "- double images in vision\n", "- difficulties to swallow\n", "\n", "Each symptom increases the propability of the diagnosis. A different probability may be involved in each symptom and connection with a stroke\n", "\n", "Some symptoms are very common in many conditions, like nausea. Therefore their specificity is low, and their power for predicting stroke is therefore low.\n", "\n", "One sided face paralysis is on the other hand rare in other conditions, and therefore its specificity is high, and it is a good symptom for diagnosing stroke. If one does not have this symptom, it may be reduce the hypothesis that the stroke is the cause for other symptoms.\n", "\n", "Properties\n", "- Human knowledge is expressed as rules\n", "\n", "Cons\n", "- gathering the rules is awkward, difficult for real world cases and impossible for complex cases\n", "- combinatorial explosion follows\n", "\n", "### Graphs" ] }, { "cell_type": "code", "execution_count": 1, "id": "a2d4317a", "metadata": { "caption": "A random graph", "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAHBCAYAAADkRYtYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5iU5fX+P2dmtrCUpdel10WKFAUBKYoNERHsSrDGFk38xUSNoib6TUw1MYmxJmKvKIooWEAFRJo0WbqUFemwlK0zc35/nGfYYZmZnV2W3QXnvq65YGfemXlm5n2f0+5zH1FVEkgggQQSSCCB2PBU9QISSCCBBBJI4HhAwmAmkEACCSSQQBxIGMwEEkgggQQSiAMJg5lAAgkkkEACcSBhMBNIIIEEEkggDiQMZgIJJJBAAgnEgYTBTCCBBBJIIIE4kDCYCSSQQAIJJBAHEgYzgQQSSCCBBOJAwmAmkEACCSSQQBxIGMwEEkgggQQSiAMJg5lAAgkkkEACcSBhMBNIIIEEEkggDiQMZgIJJJBAAgnEgYTBTCCBBBJIIIE4kDCYCSSQQAIJJBAHEgYzgQQSSCCBBOJAwmAmkEACCSSQQBxIGMwEEkgggQQSiAMJg5lAAgkkkEACcSBhMBNIIIEEEkggDviqegEJJJBAAgmUAbk5ApwCNAW2AfNIS9eqXdSPA6Ka+J4TSCCBBI4L5OaMAv4F1AMCgBfYC9xOWvq7VbewHwcSBjOBBBJI4HhAbs4lwPNAWqRHgRtIS3+1Utf0I0PCYFYVcnNOBX4FnOHumQX8ibT02VW3qAQSSKBaIjcnGdgOpMc4ah/QmLT0gspZ1I8PCdJPVSA3505gBjAGqO9uFwDTyc25ryqXlkACCVRLnE/p+7Vg+0gCxwgJ0k9lIzdnAPAIR6ZVxN13L7k5X5OW/kmlr+1EQG5OOjAO6APsB94CvkyQIhI4ztEeSIl1gKrWEJF2lbSeHyUSEWbl4x6gRozHawKJKLM8yM35CfAD8ChwDfAz4ANgMbk5TatwZQkkcLTYCxTFOsDv9wffff+D1iLSX0TaiUjNylnajweJCLPyMRSLJmNhQCWs48RCbs55wJMc7owIUAvoCnxObk430tJjbjoJJFBNMRn4Z6wDfD5fcNHiJU9hzNlOwCARCWCtJ9vdbaeq+o/1Yk9UJEg/lY3cnANYFBkLftLSkypjOScMcnOWAd1iHLEfuIa09EmVtKIEEqhQBA/seSIY1Ot8Pm+k1Gwu8DJp6T8Nv1NE6gCNgSbu33rAHsKMqKruq7BF5ub4AB9p6fkV9prVCIkIs/KxEBgc6wBVXVJaCJpAGHJzWgEdSjmqNnAjkDCYJxg0O6s59tv2xRyjV4APJSMzUKULq0CIiNSpU3vSotlfdGrXts0AEfEBSVia1g+8A9xW8nnOGO4D1rrX8QENMePZFugvIh6KDeg2YIeqli0Tk5szBHiQ0N6Wm7MdeAz454lkPBMRZmXDUodvEiXKLCoqKnj6v88/8bP/96t/qOrGyl3ccYrcnJ7AF0CdUo6cT1r6qZWwogQqCZqd9QvgD+7PVPfvfmAHMEwyMjdVxboqGiLSH4sSP9CDe9sB1wJtgE3Af0lLX3UUr12T4gi0CdAAM7LhRjRHoxmL3Jwbgb9zJJExF1gBDCYtPa+866tOSBjMqkBuzt+DweCNHo/nsBMsGNTcpcuXzTvl9GET/P5Ac+zC/0pV91bJOo8X5OY0AL4nBotQVYPBYPA1b+36V1XewhI4ltDsrFiN/AEgG+gkGZmFlbmuioaI9AA6A++p6jHvsXQRZwOKjWhjzBkJGc9QKreA3Jy2mFFMjfJy+cA/SEu/51ivuzKQYMlWDe589vkX/pmXl/8tEFRV3bdv/3qPR64bcvb5Y/z+QGtgGWYERolIPxFJ1DSjIS19F/CJqgajHRIIBgt//qt71ohIXxGJdnEncJxAs7MEiywjGUsw4ksDYHRlrelYQEQ6YrX5DyvDWII5l6q6Q1WXq+pnqvoa8DrwLfa99gSuFJFLl6/I+mMwGPTGeLlU4BYnvHDcIxFhVgFEpCXQH3hLD+6Vlp26pmd/v+U8VX3FPZ6ONSovBdYDpwIZwNfA2qipkR8xZnw0pffA/v1mJSUlpYrIYSXgIr+/QFXfb9y6ww05OTk9sdrNGmCpqh6okgUncFTQ7KwOwBKiG8wQPpKMzPMqYUkVDrdPDAWmqOqeKl7OYXDXWL2DO7Z8mZaW1rWUww8AfY8mbVxdkIgwqwZ9gYWqqqSlBzdnf78H8IpIbQBVzQHewzzLTqo6E5ju/h4lIg2PeMXcnLbk5txNbs4fyc35qWvg/1FAROqccd4FXf711DOXiMhCIA/Yp6r7ivz+ghVZKyfVbdry1ZycnAOq+gVWQw4AY0VkmIjUr9IPkEB5UBsju8SEqtY99kupeIhII2AYML26GUsANexOS0s7GMfhgl1vxz0SEWYlQ0RaYRHj2+GRoogMBzap6uqw+9KAkcB6VV3gvLrO2GifDcB8PbhXgYnAhZgDlAwcdP+/m7T0mL1bxzscbX4k8I2qZgGQm9MZ673MO/m003ctWbosHVAs/T0j7Lkp7rhuWF1msapuq+SPUH7k5qQClwLXYYSnZVi9aFGVrqsSoNlZ9bGSRdT0ejAYDHzzbdasU0Zc8kd37PfA7uqeoXEZpguAL6s98S83515gArHFWLYBzUlLj1oyOV6QMJiVDBEZg23u35W4/ySgoap+XuL+VCw9u0VVv3L3JWNRaoedm9ePq1+v3kARiXTC5gK3kZb+/DH4KFUOF5FfgBm6FVGOSQKuAN7HPPa1qrq0xDE+rNG7J+ZsLFbV6s2uzM1pB3yJGcpa7t4AUAC8DNx0ossBanbWu5izFK2Glrdh8/eD2w04axfQwt1SgC04A1qhPYgVAOckX4jtESurej2lIjenEfAd0XvLDwITSEt/rPIWdeyQMJiVCBFpjUWHb5f0ckWkHnCOK7CXfF4KcB6wE5gdeu4nH0w+bdjg02d6vd5YBfWdQFPS0k+IlEgIzliOBJZEM5Zhx56K9awtwUggn6vq5gjHeYB2wMnursVYdF+9PGNrDl+PGYBIZZWDwG9JS/9zpa6rkqHZWW1UdZGqpns8npLfw0HgBcnIvDX8ThGpBTSn2IAGMTbtFsyAVln7g3OEL8DOuW+qah1lRm7OcOBd7Bo7tBcVFRUVeDyed71e75UnQnQJiRpmZaMPsCBSSsjVKZIj6T86dtxUbKrJELexM3zY0FFer7e03zAZGHTUK69GcJveSIy0E9NYOizHhA38wMfAMBGpW/Igxw5cq6pvYQSrTOAyEenqotDqglFAXaJfvzUxEf/qtOYKh6dl142X3/rLX+fsPzBfVfPz8vMLgsHgAUzJ5iEiN/IfUNXVqjpDVV8CPgR2Y47SZSJysYicJiKtnAGrFIiIFzgb2HpcGUvADYroBvwbczp2bs7OXvnfF156OLV+k7+fKMYSqmOEmZvjBUZgjbkNsR6ff5OWvqxK13WUEJE2QB9VfTvGMWcB36nq2iiP+7CLqnDmRx98OeT0gZ8CA0t5633AtSeKJFyYsVyuqsvL8LwhwH5VXSQinbEo8t3SqPoi0sQd2xgzvN+qatX29eXmvAFcUspR+4CzSUv/uhJWVCVw/YltgPcf/tXP+2zasuX2yy44740zBvafJhmZZdZLdY5oQ4qjz0aYMQ3VP7eraoVnahw34Uz356fVvcYaDxwnYzt27UxR1d1Vu6KKQfUymLk5TbA5kRkYCw4sKijE6jI3H4/eirsgxmDM2A0xjusG1HdMzmjHeNu0bnX+wlmf/6levbrt4ujPPACcSVr6vPKsvTrBRd8XYEarTA6US3mPBF5R1YCInIbpan4UT8rVPb8n0BpYCSxT1dyyfoajhrGf12E9hrGQA1xIWvrnpRx3XMIxm0cC76jqfhHphDkR/1XVHyroPXxY837IgNbFCCwhA7qrLMZNs7OaAtdjmaYcTMLvU0/LrqFz8cNjYZCrAu73aI2lutup6vtVvKQKQfVJyebmCNY60YFiYwmmd5sGXMnxO/aqDcbE3lDKcT8AzWIdoKqBdcsXn5+eXqdtPGIGqroLmB/vQqsrwozlirIaSziU8t4BdHR3hSKvfvE+37X3vI2RTC4RkcGO0XjMISK+uunpbfbm5HwVDAbrxfGUVOC473uLBJe+HAZ8rar73d1pmKpMhUUAqupX1e9VdZ6qvoMZuBUYyeoM4CcicpZL2cc8DzQ7606MHHM/cBEwHpiUm5e/dkj/U7pg7SMnhLF02IQ5GSuBJBEpTev5uEB1qnEMxuoI0YxATeBX5Ob8ibT0SlG8qAi46LIP8Rmt3UCqiKRFjV5yc2p7PJ5xhBXXoyEQCBT88z9PPX/n3b9JUdXjVgA5rL0mqyTDtYxYio08WqWqQRH5FBgtIrtVNS7j4oQO5ojIIuAk4EIR2YIxa3ce8YTcnL7Az4HuWJr0f8Br8WhruvRzK3dr9uBv7smoXatW6wgEl5IIAJ+Slr41ns9UnaHZWT2AOzGhjwLg9fPPHLLwg08/P1DiN6uJZaKO3Vosfb/B3UJOXIhA1MvpZYSiz+9D17BmZ12GDY0Pb4ERoFZqSnLap6//7x6PxzPxWK69sqGq+SKyFwsAZgFni8imKi9nHCWqT0o2N+c/wE3EnhW5D7iItPTPKmdRRw83Ab2n81DjOf4crPVhXcQDcnOGBoPByR6PpzSh8fxAIDDWV6fBDixqn3Y81hHCjOVqVV18tK935qD+10987NHuLZo16Q0Edu3Z++Fpo67IWbth47vl6cF0UX4XoAc25Hexqn7vMiZPAVdhrQyh1ocDmEbwYNLS15Z4LcFqpa2wdFYasBnYCGQH9u9+VUQuKqlkFA5VpaioaH9ycvJJpKUfwQQ+nqDZWb8F7sKcQx9AMBjM8wcCsmPX7vMz+g49tA+4+n9bTG+1ShwFRyQLGdDmQJ7P6/3+4JpvXktK8mXEeOp+4GrJyHyvEpZZaRCRXkANVZ0jIoOBolBr3PGK6pOShXRKH6yslD5LstrAbWy9sZFe8SJmWvbtdye3KfL748kMfOitXX+qqs7HotuRTjThuEGYsVxTEcZSs7Ounv7Kc/9u2rjhLcDpwNAG9eo+sPLzD/5y183X3eYiurK9pmqRSxG/isntDRSRi9Z/t+H3qnolZvTC+wRrYXWxGeTmJIlIsoi0E5FhmADBOVh9cgMwD2uP6ARcv3rtuoGxjCVAMKiBn//63i+lZt3qdG2XGZqddSlmLNMIy4R5PJ4ayUlJqS2aNpms2VmNw55SE4tAqywCUNW9qrpCVT8GXgBm3P/zmxuLRxqV8tTa2G9/omET5vyBncsdj3dVreqUkl2E9cjFUoxIxnLixwvaAv4yNsFvwSKWw+B6MQef1DXTP+bCUTE3w2BQD3o8Mi30t6quFZF9WFpk6VGmNSsFTojhfCzaPmqavWZnDQKe8ng8JSea1PR4PPzhnv/3y6UrVm0Wkf9pOSbSO+LQahFZ075tm/YtWjR/MVKLkIOnsLCw0e/+8KdXsDR8EbbZ78NIbm2xazM07zAdSM3Pz/8uGAw2ipWSVdXgqtVr3gFuFZEHj+NU/EPE1on1AjcAv3d/p2HfYbWAIwPtKNqwbItHpIAYk3Qc4qlLH1dQ1V0i4hWRuqq6V0QWYC1ux20kXZ280OeJEWEGg6p7c3I2Ss261VsqyiGsdlmW6BJgF5AWrtzjWhvGAge/XZE1ddWatXMDgUDUAa+BgN/ba8DgrPDeQVXdjjUXdxSRoY44US3hPntIErCiZN4eJIYz5vV6vH+8765hwJASaxERSRWRuiLSVETaiEhnEekpNkVmiIicIyIXisjlwHVDTh90o0RXnwEgOTk5ZezoC7pirSpfYf2hn2CKRC8A/wCexEgmk4A7Fi9d+i+/3x+TGLJv376sGZ9/sRgTrLi2tIi0OkKzsxphfIZYqIEpOIWutTSshlmlNSYR8YlIMxHpJSIjBoy+sp+qxgoCwJykbytjfVWAjRRHmVmYZnbHGMdXa1SfCDMtfSe5Ob8E/syRnqWKcOAPf/7b/2HsxC+rvXSZXfBFkRRlYkFVVUS2As1E5DuslaE7JoOWDoy87Re//PXkN159IynJ1zIlJSV8Yw4ABTt37bp08ZKlycDF7rv63r32ARGZjDEMzxeRj6tS2SQSpFgK8DtVLauzERGaneXDPnMs45HSrlXGOcA+ERmBI2C5WxDb1AJhN3X3h98KgfzGjRoWur9jovtJJ32vqkdo/bq6aD+sjvmlu3vU9bfcntL75JPXZ3bu1C4pKekIclxhYWHRvIWL7sIyFM8AD7jPfdzU/B1SXOtPqce5f1OpImPpMj9NsDJKUyydvhvYCqxYsGT5l7v35lzVoF7dUzweT7QPVAT8q1IWXPnYhO1hS93eNgs4R0Q2Ho8EoOpD+gkhN2cs8Ce/39/C4/EUeDyeZIxldQdp6Vki0hxj1G4D5pTWeF4VcB7vJdj6ssvx/J7YhVcDi1QWYpJ6fuBzQOrXq/ene3/1/waOv+rKDg0b1E8RkXzgLeAPpKVnuddphaVAtgBzQ+m5sOi3I9WIDOSM5Uhgo6u9Vgg0OysNS3fGjPoOHMzNrdOl70OYszMX8/oPYN97tFsg9P9DPXm5OY0xzzqqMLjf7y/auzfnHw1btftV+P0i0gKLcr/HPPK+WN1zJXBe7Vq1Cj+Z+t5Fp/TudaqIFPkDAV8gEPDs37+/4LZf3DXtjUnvzMHaF5Zh589NwF+0uot4c6hm3bpuep12Pyz64s2U5OSokZkzqK9JRubVItIAcwwCmHTk9mO4xlqYYQzdamMN+lsx/sH2UEpfTKxk4K3jr9B/Pnz/E0BtcSpdYTgI/E8yMm8/VmuuSrgs1zis/7nA3Xc6EFDVOVW6uHKg+hlMgNwcueSq8ff8/c+PzmrRvNmakvR49yOcim1ss7WEkHlVw/UcnaSqk8v5/J4YCeAlbDPuDsxXN41DRO7ALtZ+wJykpKQ3CwsLI9YlXbTSF2PKzlXVNWGPtceUgr6Io0f0mCIsstysqhUqstCwfr1aWxZ+sTkpyVc31nH7DxxckJ55yu1AS8wpW4NFCznuti/8/zFrnbk572P6vxGNdGFhYaDHqQPeWrVm7RTMIdwC9H/04YfO/9lNPz2zRo3UkwHJzc1dnpef/0jTtp0ygsGgYoZ0jR7cuxk4Z/ZXczu/9Nob6U8/978dQXN8WmGsyyxVfUdELsY8/EdVNZ5RTJUKMUGI1livcl2MFbxh07wZdzVt1OAGn88XMQvm9/sLP5v99QXnXHXDdOcYnoQ5CF+q6o4KWpu4NTWlOIL0UWwct2LiBcESz0vDHNV62LX1g2ZndTlwMPflGqkp3bxebx6W7QhiNdi/SEZmNdyIKwYici5G3Fvn/k7FAoqprk/8uEG1NJjuC71cVZ8v5bimmDe+CzOcVZ5eDIsuZ4dSoWV4rgczbp2wTXsd5oF+EWrQFpG+mMeWi42m+hx4WksZhCw2X28w1tz9pbopDSLSGDgLU89ZXJb1VhRcWut8rHetQqTc3HfZEvuOGs19//XBvbt1HefzRRaq9wcCeYFA4MrUdj3fdc/vgEX107FIsQ6WEg//t4BoxvTg3qZqwuANIpB0cnfu2vVQo1btD2CO30HAN/OjD1oMGtB/uNfrPSwyLSoqKvz8y9nfnHfRxb/w+/1NsdaJoFtnW6yJvj0wGSMM9cA2+t9iuqp3un+fjUfV6FjCXR9NMAPZBnMoNmAR+RbMkPRr0bTJKYs+evvuhvXr1XfnxyEU+f0F2T9sfbn9gLNnjDhj8I5zh52e9sXcBd63PpgW5CgMpjtnGnF4BFmAGcatmM7r3lI+WyZ2Da/AJo4Ewh4f9cff/HLXr265viZ2/X4tGZlRuQgnCkSkK9BUVcPbgLpgowrf0+pohKKguhrMJsCAeHoXXbTZBzMyc6L2L1YSXEE7U1XLxAQTm75xJnaB7saM7oeq+mnYMTWAPwBzMEbxfnfMu3G+hwcTST4Za+Jf6hr4a2LtDHsw41xpiiNhxnKLqs6tgNeridXwumDp1CxgX0azpudlzZxyX1qNGi2cQ3YIgWAw/4dt2xd2GHjOY4VFRdPDnJNTsb7IqRGiCMFaGUoa0UPG9OQe3btPfPo/Q7p2zeylwWDA5/MJ8J2I3Eta+mQxce/LgAuuvOyShs/951+np6akRIyogsFg7l8f/9fTv77vgd9p2EBhF6GdDwzAVGRCDuR4rH70CJbe/5X7HDOOePFjDHeNZmCRZGvMQdgIbAgXexDrYzwTM5p1zj9zyJz3n//PtcDNRX5/ioh49u0/sDdrzbq/THzzXf8Tv39gpHg8g/xF/oAvyefZszdn8+YtW3/Z+9wxcWV2XPalCcXGsRHm+ISix61RBUSOfK16mEMKdg3tKfF4Oiaa/3JVOy2VDZfGHgO8GDKO7vq5EMuEHDeKVNXVYHYCMsI9kjie0xjbLHKAWfGe6BUJZ5AuwbzcLWV4XjsshbMe26DzMeMl4Xl+EbkRq2cJZvi+B15T1TIx7JxxHoRt+F+o6na3qQ11rz+9Mr4/ZzDOxzamcjc0u4svA4smm2KR+QpV3S0imVik+EVw84qdwKPAtf5AQMWeWjj9i9mf/umJZ8fP/Gp+aLTXTFXd7F73HOCAqs4q43oysQ10VsuMjDNO6dOr7r79+7d98tlMP/b7JmPR4DbAv2Lh1/d27tSxdSwRn/379y+r3SSjR4n38gLXYA7ji1iUNhKreT4A/BdjR/fBhk0/URklDOfctcKiyOaYLOEGrD69P8LxXbBoew1WPvgiVHfV7Kyks6647hc109JWTvl4Rqf3Jz757VmDB0zyejypJVnAqponIldKRua7Ed4jjcOjx7puXaEIcltZiSju+++FnXsLMANwxKbqnC9PRTiFxyNEZCyWddsadl9DrGzxRnXkokRCdTWYpwDBsrIkS5y8c1V19bFYX4z37wR01jiFhp2R6o+lDrdhm/48VV3pouxB6qabiEh34Gas1eBnWPS0C/h7eY2bSzv2x0gi8zG2Xm8sVTLtWNYXwozltvIW/90G2BkzTnlYNLlWVf3uux2ERQ3TVTUn9DzNzkr7wz+fHuvxSN7dt934rqdl175AqqrOdGn+4e61FmG9kKOx6SjxjBILfbZLsckTP4jISCw9972LqM/ADFzAre/7wpydjyf5fDF79VTVLzXrHsGOFWtnaYOl1d93109drMbfByODfYy1YbQH/qHHYHCyi6LaYFFkfWzO5EZgU7QN0X1Xg916v8Ei5S/Da+rOEb0e+Mzj8ZyVkzX/vpppNaIq5zg2eCNPy64pFBvHZlhqPWQcfwB2Hk02RUSaYQIYezFjELFG7NZ/JfBBycjzxwJ3TkpJfoKIDAIoi0Nalag+bSWHIx2n11gWuJN/gYhswOZGtscuvpj1vYqAuyh6A1EnjZQ4vh6WfgoxLVOBSWFr3QHUcRusYim2t7ALdDsWCa46mkhQTdBgM0YeCtVdF4rIHqzt5JiQgdwmOYJyGEsXUbTAjGQLLJqcXiK1Vwery+7BplkcRs6RjMzc+/7091VA0T1/+JsfYyFfJiJNVHWriEzCjGZjrCXjI0wzdo/GNwmjP5ZuDB1bF8gRGyAeStvtw8TRF6pqAbk5f6WU5nZVFY/Vg1aX+Ex7sTRna/f9LML6dhe476g/5gxNBm7H2o1eiElaigPuvRpTTNpJxgzkN1iKPaYxck7hme45S7Fo/ssI51xIwGH7T6+6pEVyUlJM5ZyCwsLkf/7v5f8BUyhOry4D9lREvcxdk/0wR3d2HNdIBpal+FEaS4eN2LlfktA3H7hURFZqJC3maobqJFwQjrrYJlAuuC/+HSxqG+PScscaHbCLotRUrNg8xlEYS64OsERVp4Ybdlfn2I55x5di0eQKLHo+iPWdHXWzs6oWqI0TmwH0E9Pk3IYN1h0opgdZYXDG8jzMu4/bWIpIDRE5Gav59cPS0a+o6pcljGUrrDaySlU/i2EUFNeXqapFWBvJQBER54RMwc7BMZgh+Aw406WzY62zBS5TEPZ507B04ygsDb4DM+RzsEkOvTdu2ryutM38u40bs7GywzUi0tdF2Lh1KmZUGjlD9QXmVCzDIr1+WPblNSzyHEw5IKbc0kpMG/Rq9zoKzMTqc1+q6uZYxlIMvbDZrrOx9PE5WCllQ4SnJAOFqrq/X6+ezZDY/ZapKSnJA/qcXBPjAsxVk6vbXUHGsh3mXAaBN+N0KDtxgk6OKQN2YIIsh10/LvMwDxuKUO1FNqpdhOm+tDqYB15uOIOzqES0+Xmk+snRIiy6jDl70G2eg7DaThBLI06LlsrBvONTsNaPB3FMUmyjz6ccUXg0qOoWEXkL21RD0ck7WJNxiB5/tBFJEmYsd8WbghHru83EvPnvgM80Qp+dO2/6YCna6Vq6kPohgwmHou2u7r1WuPPnKxHZhkXDXwOLse9jsjOyJdfgwzIAs8JqYd3cuupgLROzsYinrYgMxAg563fs3PlA61YtXyWKHFx+fn7gwUf+8L37fDlYFmaomNxYHtZSsQmL9La7SHkDdq7t6H1yT0/jRg1H7M3Z9+ncefM/Bs4Qkex4yhZiJKmQIHwLzHnbiAnNl+k6FSNlDXN/TsKi6hHEbg9Lxk0iSfL5dlC64Quc1ufkBdgmPVZEZqvq+rKsM8K6a2HXbm3g4zjOr9DzUjEHKq7M04kKVVURCWnLlnT0V2Mkvc5Uc+nTamcwsQ2jqKzF92hwxI/JWC/jRWJjmb6tCG8zDB2x6DJquk6srWM49vkCxFdj3YbNAH0O2zD6YpFOb6ymVqE6oWEp7XXYxt8R6xHsgYm3l5sMFGYsd2NGI9axqZhX3gUzbCuwVF3Ec8IdfwaWMZmk8bUXHWYwHWZhqej1oe9WVdeLyG4sGtqKSc4N27dywYLatWpei6V+FXivV7euq75ZvmK7qm5yaxoGnIv9dlOxFHFHLA25HauTbjwUjeXm/F8gEJjg8XhSQt62qmogEChcu/67115+7Y2D2IazEktT5p939vAxv/z57UO7de3arlbNtANr1q1fSm7OHaSlrwTm/eK2W878xc9uHdeqZUZLv98fFPH8atfu3V/97M67Pnzr3cmjReRZjSBc4dLaoVRrA4xMtMH9DuU678Qa+U/H5AAXY5mkEcBXpRi0JCAoIid1atcm7+KR58QcbRcIBPw/bN8xVVUXuE16mHvv2WUll7jf4STcNYc5Y2VhuXbAarjHnarNMcAmzCgeZjCdMZ0FjBCRDRW9r1Ukqh3px0UUfbWMbRlxvnZdLKWlWLSZE/sZcb2mB0sTztAIY4XcBdcd804Vi5K+jBFVhj/3UowscBk2dLYF1kqSCfwnnuigvHDr7oJFuFnu7o6UqBfG+VohY7kX++wRTzoxwk0mtlFvxBiHMUc1OUfkLKyWOT/ezUxEegNeLaEoJCID3P1flrg/CTt30v/6wN2n3nHduDu8Xk8QFxEGg8GD/kDAu2dvzgXNeg/egKXRUzCn5wDFkzRWY03cR/z+ItLg7v/3izv/76EJfYKqQzwi6vV6Zz/2ryc+/n93/2YGxiC9GDPeOyc+/Z/0Ky675BKvx+P1eDxeADOKUhRUvS3J5/s+GAxO8ng8hynmBINBDQaDeVeMv/6pt96dvBQbjFwENKSYtFMD1/qB1SPLnV0QI+P1x4z9Z6q6TYrbYeaq6toozxOMrDMYOw+/AtrPeOP5Swee0qdbpJ5aVS3ck7NvZcPup/0Vq+WuwBypUzFW8ucap/qWmILQYIxn8KXG6MGM8RpjMYcgbtb8iQqXYbsKeClKhibitVedUB0NZibQWFVjpjeP4vXDPcbFwLKjiTbF6PDtVfWDCI+FooyumKGbGa+RE5GWWHT5lbvdDryNpfhaAhMqw2t1dbIB2Ga6AYv8voyRPiv5fB9mLPdhaV0t8Xiye81MLOLLwgxKqV6mFLeMxL2esOeeDCTrkay9EMN1mkZogH/soXvH3nbNla8k+XwRo5yiIn/BwNFXvrZg6fJFWFR2CnaefRoplVzivUdirUWCOSeTnfddE0uTv6+qe0Qk87KxYx6a+Mx/xpbQEj6EwsJCv8fjKfL5fBHl5VRV9+3bv6Vu81YvY5HzDiwS3oAZyu0VVPMLkdv2Yr9/oXNcRwJfa5jyVNhzamHnRGfMkAfc39nAN+m1a522cd5nV6el1ujv9RZH40VF/nwR1vl8vsGell3BjHQtzChvkmLZwY3uvSM6Ae6c7Y05jPOweniZvwuxtomzsNav6rXRVhHcOb48Uu23tGuvOqA6Gsz+QL4eY9UZl3IajKWlP9dyMNhcdHk5thluK/FYc+ACTB5riXuPeJugPdh4oyXYBjYMq+PMxzzlbFWdWNb1Hg3EGJ4DMcJRXczRODRJRLOzOmI9jIXAF5KRucdtPOdiEdbn4ZuGWN9sVyyi2YxFk3F54XJ4y8jH5fT8T8ZEvo9QFhIjZWXiDFb4Y5qd9YaqjpUjNUEBKPL7g7PnLZp1xmXX/BGLJk/GPnvMDUBMsacP1v5xIaaAsjfs8a6YEX1PVTWwf/cH4vGc54lClFBVDQaD6vV6oxL78gsK/JdePf7d96d+lI31wlXocN8wh2aeqq5099XFIsv54c6j+z7bYEayMZYxWINFmOdiqfz/qWqRiFxRu2bNaTdcefGvr71szPCG9eo1yC/I3/3OR59+/NRLr/951brvdoW9bivMcB7AHM+D2HncGMsKHebEOKN6OuZAfFXeEoR7rYHYXlYhQwROBFw95oIhN4+7/OKBp/QOYA7lK5KReSjiF2vNOwl4N7h5RW1s/9wpGZnVQtaxWhhMzc5KwjaJURs2f9+qsKjo407t2jwuGZkVTtAJh/NMQ1JWyzC2atz1CbchtFXVqWH3heTtzsGiqqmRvOhSXvd8zCDcjxEG/oU1offCdEGfVKcrW5lwaclTsO8sGVi9ZeEXm5o2bjgRMwyhNEtyIBB4pdWpZ7z/w/YdOVhkrc6D7OCen4RFk6vKUrOQ4paRvVjEUi5pMRHpAaRphEZyd15EVCHR7Kx8Smn/KCwq2pvarudZWKQ4CpiGkbzE3TzuFvrbi4lGLMMiqR1YFCQljjsVq31m+/ftetXr9R7Rk1kWFBUVFbz4ymuvXn/r7WuxDMhrpUXB8UCs7eJ0jJj0acjwi/VpjiTMWLoItAvmDOzB6rPfYYZyAMWyg8HQbyUiw7Hv52TM8O3ANtY9WMlgb4n1eDDnrDcWwS/AxBQGUtxvm4wZ1uYYaeuopiG5NPRVGBv6mO5jxwM0O0uA36vqnYFg0OOzczdUppgI3CYZmQGAX9507Z0TfnHLxem1a/fF9hQfNkPzN5KRGTF9X1moctKPZmedhM0BrAnUbtOyBaraF7hXs7Mul4zMKcfsvc1bWOGIAYMx5uLnGkfDvhSLJHwSdl9NrNbYFWtT+KSsHqqLvC4A/qSqgdSU5MyLzj2rwd233XDJkhWrmj7672f8K9euL5MBrig44zRHRNYAQ/v27HZm3fTat6tqDfd9hKf/rl7y8bt9vl21ps+wS69p4CKkdlhabS5WFyuTt+aihSGYCMDyo/04HEn6sQeKSQjnORJCARy66GMSTtzz0zDD4MWcg9C4r9BIMEr82wxLHZ6Mpb73YgIDWuK2E3OYghLHPFNVJUoACoCIBMTjycGMZUP3eV8/GtKFq0OfgWVGZqgjNDlHZyRmrDa4UkYX7HOvBt5V1X3uuOFYFmOOS6WegqVlQ9iOZRdysXNuH1Yf3RtpTc4JXi4iazGjeSmWJp+EGfZbsDrlUqxVpCL0XVtjbPAfvbF0eAC4XURSfN5Dp27I8RyHXQe3anbWmX++/1f/h/Wlh19vY4FzNDtrkGRkLqvEdR+GKo0wNTurAXax1CPy5pULDJGMzAWVsR6XiuuHsbi+KRltanZWB8wD3eZp2dULtFbVD91z22I/fAB4PRqRoZT3F+A3WNP7y/tXLzwzEAhOTk1J9vm8Xk8gGFSPx+Pxeb2vAzdIRmaVsclExJM9f+bbTRo1GBUt7RcIBnOfmPjKP37+wO+XYZFDuYQW3PcSahn5VEshAsX5mt2AOhqjF1QijCHS7KxsjHwVC4slI7OXS8v30RjKT65GfDHwKVbrOywVG+H43kBjPbj3Ucx4RkXQzpeoFlNVCwafPeKaWXO+OoBlRRRL+39YDmdGMAfyJCwFvSnssZCx3IQ56W2wdNxKrLwQdGn2XpiDsRRL+YeM7UAgJ+QkiSns9MOutfbudXpjRnpqaSl6lxbujzkqirX8hHpXl1dQ7fY8rBZfpRFRdYBmZ9XCyG8RW6Yc8rHs0zLMHkR8KWClZGR2rdgVxo+qFi64EfMQo13UNbBaXqXApd/exrzXMa5oj2ZnDdbsrCVYTfE9VV20a/ncjxd99HYtsUbuEcAvsAv3saO4SM7ATpbXNTurf42UlCnptWvVTElOTvF6vUnJSUnJPq/XhzXTT3YRT5UguHlFUvOmjc+NVSPzejxp118+dgiW6vumnMYyFSMNNcPSW0dtLB2iRphhmA+0d2zJEP6G9T1Gw0Hgr+7/dbGUYiycSvGGvziOeuxioPbns2a/7Pf7ozpMeXl5gewtW/KK/P6IJYaioqKihd8sXjprzlcbsevsc6x9pJe7xQ2XWRmJOZNvlzCWTYDbMAGO5lgt8nVVna6qm5yxbI9FfbXd8xfr4cIHSbg+TIedbq2NMVWh0FSRGsQ3RDoksF4Hi6y/w4Qq2mJtRbXK8vlLwn0fjanAPunjHCM5PEMQCYpN14mV9RSgtWZn9amohZUVVW0wr+PwNF5JCBaGl5oGqyio6kFV/QjbmM578fE/3e6iyB6Yh5QuImn10us079m1y8QHfnHrf7E04ZOq+kZ5SQLO670YeE5V/ar6j5JjnsJQA6u/DCjPe0V4b5+IpIpIbRGpLyKNRaSFiLQRkY4i0lVEeohIHxHpLyKDLrjmlpGBQKDU8yetRo0W5fXYxVpGxmCb7AdHQ8CIgFINpktNLsC+6xD+A6wOBIORGMp57vjX3N91iaFY5dLvGZgx8GDedexFW9Zj7ZkjRrXbtXv3bMxAH4aioqKCNevWLbzmp7demZOTsyM/P78o7Pla5PfnZ3+/ZcNZI0fPxM7rGlhk9x6WNj/TkV9KhVh/4xiMuPWBquaKiEdEWovIaGwT/B5TAXpDVZeq65N159pILBX9mZoyUyRyxyHhAvcZiihOb6/EnKkCYgzsDltvI6xskgH8D3OA1mElmT1YPXSMI5+UF52A9XqUQh8nEBpSSvlPVWts2bZtIOY0xTwUO1+qBFVdw6xT2gGBYFBOGjbyqtXrN+RgF02B+zeum5ZTXFlV1w46pffWS0aes1mKJcgOg4jUuPf2n16ybefOpk+++PrRillfDyxQ1SzNzmqpqifHqj+pao3cvPw7a4usxzzw0M0X5f+xHg9ixXW/+7coxt95QNHB3Lz9EeY8RsIRTfHxQIqnV8zSo1RpiQIlPodxJZApIh1Uda1kZObdfu3VI8dfMvqF3t279heRwsKioiSfz6cekSeB+yQjM7RRpmPG4gi4FOYALP3fgwiM3CjP6QN0DgQCU1t36b4/f/e2zIKCgge8Xm8jESFn3759m7O//9vAM8+ZdPDgwaYvvvp6m6aNG9/bpXOnWxo1bOA7cODgD1M+nPbmbx787aYivz8FS8WuwcofwzDd3POAi9bN+fjbdq0yfoalLwPA+8DfJSNzjRw+OGCa2sSbdFfW6ISdLxlYv/CSEp8j9L7tMQdjZSlku2SKCWUhKCZwss1dJz53i9bjG3WQOsZjWIdF1p2xiPNk5wx8qWWfs9sZExhJwLAJ+/1iBUcHG9Srt0ZVO5ZSn1fMBlQJqrqGOZtSoiRV3d+63xmts3/YloRdOGW9KWUwsIQZ5R1L5wypXzf9ZYmtH7ofuNbTsus7FF+0sW5JEe7riREd/gvoXTdf1+XBO2/7Q820GjFZkFu2bV+b0Xfor7H8fzRDV9LoHfF4WZjB4dDsrI8pnl8YCQeB/ycZmU/H+5puIx6IzSk8gvFYUXAGubGajm5pxzbBmLlvqPURjgS+C25esRHo9vDfn+g9edpnXy5c9u2yEs+7HKsHHpGWFZub2g37LTaq6tJS1hBSM/Ji9U4/lpFY4BG5NCOjRYtWGRmT5y1ctL6wsLA9lmK9FHgBM2DtsejxNKxW9ylWeuiBMZ+LsCixLbDmpcf/dPmlF5zb1ev1+qS4haYIKNq85YdbW/c78yAWkc3BjGYXzEFY417ndKweeIic5Qx+Z/d+GzC2bDz9tmMoMRhaRK4H8vyz3n7nzc9mPz6kV7fR6bXS6iR5vbs9Hs9zwD+9A8dsc8e2dOv5AWsVifqejsnbH5u2koeRkqJp3EZ6flPgdFV9M57jfwxwXRDbsYxLNORhghzTKL3W2VYyMiuqNFMmVHWE+Tfsgo1YM1DVAhF5cvOWreVW+XcbcGlGtXak+2d+NW/kheecWSOM1XUEgsFgzQ8+/fwq7AILGaN4bwVYdDcQeB6T3vJv37krNSnJFzP6UVU9mJu3Dat55lM8sWKPu+3VYz9j7r5gUAd6PHKE5xgMBoMikiMiL8f7Ys4xOQur+71TQWzFaIg3wsRFMZuB3iKyA2P3ZUlGZhCY++Bf/5WPsbwPwXnJNTGHihKPJeH6aTEjEzMV61K3w4G1WBYixJLNAX4eVN26aXP2lE2bs9dihqg/Zlj3YHXDJljUtAyL+Otjo+I+wc67GZiiVCbgv+HKiy8ZM+Lsbj6fr+T+kAQkNWvc6Ok7rht31eP/fbEQM8rbMKLOJiyKuACTnww3lo2xVik/5kSURS3qsJSsQ0qHjGZeYN6YIad18Ho9oXRsU+CXwK0rX/vXWZlX3F4Xqyd+oXEo/DjnZppLSZ+GOYNnichqzNiWJhbShYTQ+mGQjMwizc76GfA0kY1hLtYyMkuzs77FUq6RgoV84N2qMpZQ9QbzXYxY0Z8S4XogEAgU+f37UlNS/ng0b+DqCH7sRynbc7OzamKzEKN+TyJSOOKMwZ+r6jPlWZ+I3IZdiO+F3Xf1n+676/vGDRu0ivG8gx3btr4fiyRqY95bPWzDyATqikgRZkj3hN+Opm0gHJ6WXdc88uufP3HPbTfe7PF4FHN8FDiYm5+fc/PdD/3y5Xfej6vhuIJbRuJBPKSfcMzDRCq6Y4o74VH5bixaDEcdTF84UvR+MmbsWlNKKlZETsLSsIdGrYlIBmZ8dmG/f2fMoATUZoGuwc6BDRgjtSnFRrkQ+DfmqF6MXXuvY7XG4UDf3/zsppGpKckxznmP9ycXX3jj4/998R7grVDd0ZFdLsDE65e5+0KTWjKIouwTB0LjvULfSTqQ8+4f77lTVTt6vZ6SfbGpqprSvFH9T2qn1RixPzfvzbLWE9Vml76NGcB+2O/eVkxP+ZDARmD2pFAPbeuDefk5jeul19++J+elcnzGExqSkfmyZmcFgceBlMKiouQkn69ARILAvZKR+aQ79AJVneX3+zOSkpLCa9IHsHP4hkpe+mGoUtKPa1Q9DxMXz/MHAgf8fv8BVS1Yvyl72ZmXXXu/p2XXdlW4xCmYpx4V/kDAd8u9v/3ORbJlgmsR6IqRD0L3dQD6//Xp51/yBwLRIsR8jB34uRr2OcbhElWdqarvqOr/MIdkMcYKbIhtXJeLyE9EZJSInC4i3RzBp2aU94q29hrAuff/6R9PeTyeRthQ6yexC2JU/5GXtX3l3SkBETlJs7NEs7P6a3bWzZqdda1mZ7UIex0Rkb4Y6eLjSjKWUEaD6epY+UDDCEzdPVjUFo50IhB+XBTdFXMQv4mUrnXH+UTkDGzDfldVN4hITbGm/UFYj+LHWON9LcxhChnnLMyIbsQEAWq4NR4AaqlqUE1J6xHMYb3J3eZldmj3aasWzaLR+gHwej3eHpmdumMEmXQRaeocnsuxmu0GRyA71d1XCLyJRcjlQckIs+lZp/TM79iyeQ9XDz0CIiI1UlJ8e6a/1LC85Bt3bWVhWrvzse/4WhEZKCLewOxJo7H2mHeAx1NTkidueveZx/2z3v55YPakKmOwV1dIRuarmPM2ZuKb776cl59/JdA4zFgiGZnbug4bedFbU6f/CxvSsAYrH1wFnF7Vij9VHWEiGZkFwO2anXXvpKnTryws8qddPeaC1zoPPq8Vbmq8iORV4kYavrZtBeuXvOnxeC7zRdAO9fsDhavXb1j27KtvDQJ6icgHwNI40jYh4sN4TIg45KG3whp8l/z5P889WVTkb/v7e+680Of14vN5U4LBYABQj8czDbhKMjJjFqDV5msewFJ/4e+dRnFEWg+rW9V1ab69HB6R7sUipXBZOx+mZLQmLGKY6G4AfLt6LSIy/brLx95e5Pe/l+TzNcEMVBDwaXbWB8+9+tZNmBFPwqaMVCQLtjSUyWCKsZiTgY0i0i6ciKSq+0UkSURSwtLgdYncUtIPy3YUYCn4aO91Flb3mYwJFXTHSCkrMOWkkBGog01Z6YeNIENV94oNAW+ApcBCsyALRQQRSVbVQpdpmCIiczHD9rtAMPipiJRKbPAHAilYlOrF2KmnYqnZZlg0Fop612NGvyvgcRFF+C1Qyv8V6+0cGvbcbucP7NMxEAgEvB5P1Dq/R6RWkT9wrtfISuWGu56/FpEszFk5/6HrL/+Jqo5zjiMA3mIO3P2YE3P/0bzviQgXJH1y090Ptr7p7gc/KknKdPXyblf97Fd/u/K2u+IZ1l6pqHKDGYJkZB64/Nau84DkcXf8eiuWbroM8zIGiEjuMWJLRl+TSFrdOnU+Wv3lhxkN6tU9NRjUNK/XI66GlKfo12dfcf2zWF9YCqZGMVxEPsUar21EVHZWXeAajCATAN5r2qhhytYdOzep6lfOeA7AogEP8AQw/O/PTpz/7Ktvzlz44dv5Hdu2zvhh+w7Pbfc9vHvytE+fOJrP5QxTLuYdh3/eVA43pBnu3xQR2UuxET0Ji1pjamQGN69oGgwG73HR62HGSVVHjjxr2NzaNWuO33/w4NzyEo+OAmVNyQ7EPu8uYJiIbCoRuYSizNBFXhcTNT8EsYb71tg5MC1SKlZsQPEgnP6qI5EMwkgRkyNEpE2wa6Qvdv6EeiBXYEYql8OzJAewzfwQe9nVE/8lIiet+W7jVTn79h+sm14nKoNdVTlwMHffySdlHlj8bdZat75XsWjgNOwc/puqbozw+UKygF6KJQLD/x/+d0g9qjvFM0DrAl1zDuTWDgS11AzZ4tXru5w2VG7AsgP52PcY/m+k/xdE+m3UZn9ObZBee/Gdl1+QFW4sS6Am8MvA7EmHiEcJxI12QK7GGJVYlag2BtPh0AamJrI8H/NiP8IaivO1ksbkuChs5N59+7Ia9RhwxkcvP3OOIH/t3L4tTRs3XJiSnPyfJJ/v6x+27/Bh0YAf+DvGxhsBnC4is7d+82VG44YNXsA26JoAgUDwrDWzpnlXrftu5CUjz+0+4ozBw7ds275s8bcrvdjk+tOwjbnmgYO52zqdfu5kgJYtuwpwlYjU0TIO7o0HzsBv5ciNPpliQzoAq4utAq4TkRwOj0b3YKosQeAPHo8njQiGSURSGtWv1zxn5fyGjjxT2YjbYDojVgM3WFpEtmJCA+GTTnZj30/oQk8njPzhGKIDMEPwdcnfzxmSfth3OxU4ICJDMKcl4rxIF+nXxc6VFUBXEZmnJse2wb1fiMQWwhEGMwRV/VZEHpi7aEm9YQP73ZCSHLmOKSI0qFe36bwP3vjoprsf/Oh/r0+a797jVCzK/bRk5BD2HqEo0R/2eh7s2qiJRczht8aYk5GBOWnbgU21a6Z9nJqcdEmk9wjD/lO6dnwSk8BLxX7D1LBbDSwKr1HivmQRKSCKgZ306D3da6Qkx1POuppiEYsESoG7RnphIvnVEtXRYIZvnquxaKYexugbLiIfaBxar0e1CPMcRwJrVfUbgPOu/mkh5kVvwDz9A3DIsH+EedkDsc3ua2DopRecd3m9uum3UkJ/1Ov1pNVMq8HJJ3WZ9uoTfw2Kpcp885cs/+Gpl17/0/9en3QA21CSCBu2qqoqIhuxTTVmG0JFwqWktrtUYR7wB1XND9uwQxFpR/d3rbYtMwrXzJ52gTdGr6YzpndgDfOVjbgMphT3G84Ii4LnAheLyKqwiC/EPg2hZA2zC8ZY3UiJAbouAh+OpWknYSny87Ca35sxUvwNMRKXX0QKsRTv6Zg8XNCRf0YBq0Uk3a01ZDAjQlX9v/3lz37RsW3rYc2bNulYIzUl4u8nIqk+r5enHv3tiN17c5ZMnvZpfYyl3Q5QsSHc+8KO93GkMQzdamGR8L6w2zr3bzI2auwd9zptgCV3/v25hYHZkz4PBINnet0s0Agowuq/Abe2eAloHixjFMnApvv9/u6BoHpL6UJOdd9FAvGjDdbmViqbuapQ3Qymh7DGY2cg5mD9Z29gtZpzReQ9PUaixiWM5aKwhzpjKadQuugQ3Eb6hSPxjAY+BF5+4vcP/CRWjUVEPB67OH0AfXuc1KrXow/99eFf3TEso+/Q3phxKhlZbMC8sEozmG6tIf3O9w+lmi0ludPdwo/1/un+u7pJsdGPhahM4GOMeCPM3sDW8BSRmprNYiyC+9DdvRu3QbrUtkeLFW2SMUMWwE1uCb2WWPvCMMyIbsIMpWJGrzTHsDFWNwQ7J5cDg0Wko6st78AY1BuwzWgJpRhMZyxG/OFfz0z558P3dR538YVnJSclpUgUEQ2PR3zPP/b7rnUzT73MXTsdsFTwSPecHIoZ6vspNoh73efdB+yPFpG68y68vahp2Gf+SUFh0bKUJF/dEpNb/Fg0ONI7cEyZW5Pc9ZxHBAlEEfE0b1i/jQilZUUKKc42JHAkIp1QvbDJMdUWVS2NVxJCCaUOx0jcDvRwaaklwAi3KVXsmxcby/XhxtJ5x22wiDfWlItFGJvughqpKU3r100fGkv8uuQm5PF4JMnnS21Yv94bHos6lkao7W0B6seon1Q4xGj8wzH5sr2lHa+qgYvPP+c7T3TPP/zYqqrxlGow3efugkWUJbEcqO0iHjg8wkzncMJPbyz190Uo6jJysPTCjOUsLHoZgSkLvRdnFqUJdm2AXcshAfH+7vqohRnLIHb+QikGE2Mr9ykoLPz2p3c/+L7X48mPZiwBPB6PN61GjQtF5FqsJ7MD5kBNx1peNmPf8w4sbfyFqs5R1eWO2b03mrF0OIIhiysZeAeO2Xbe//vdT96eOXdObn7BQVUlEAgWYOSzXt6BYyoktScm9dfSpcjHnff/Hq7vDwRKO7eDGLs2gTjgCI8eLANTbVHdIswjDKbD15i+4ypVXe7qi+eKyJTyUsaPeGPbYM4HvtMjB742devagqmmRHU0VHWNiOT6vL5zVNUba7OJBo9Io+uuGNvu2VfeOoLco6oBEcnG6jory/ziZYQUi5/PV9WIMm8Rn5eRuS9/3ZJZyclJwyTKl1Dk9+f/7/VJ39x8z0MnYZNMKlN7M54IcyAmiH4Ee9elPGdjEV22S1EHXHr1UDrWpbHPxH6rb919KZihTMHafgZihuVNLVuPbGMcMxbLfARUdbdLxQ7Aru957rg6zsmKajBFpI973hKMXRvwer2l6jh7PZ5kYKFGUStyUWsGpjbUV0R2YinX7+L4vIcMpnNc61PsJDB76cqk2UtXTgXeS/J5dxX5A/tC6dujgRhjvAWWNWiN1eaLgOD+3LyN23fn/C6jcYMJHo/nCMfV7w8U5hYUfFjv7KsrlaR4nKM3sCgS2ao6odpHmGC0fcw7PdX9PQ/bkIZLsWxX+d/UjMJITKIs0iixltjFsoviQcBRoarf7z948MPcvPxytUmoqm/seWcHNbIQNVjU0Lo8r10WuE3jbGxji9s4O4/85J/d//DMGBtiUZLPt+G5V9/+E7YxXSkifSsxco5pMF3kWIsorR9gvzMWOYXGbIWizLoUR5hnun8/diWGhpj4tx+LCLtgc1O/KIuxdIbZG1Yn9FBc/1+ARZ9dMYOcSrFQQkSDKSYVGDLc+ZhR2uJq5jGRm5+/G7hVRO4TkbNE5GSx3t5kMOfCRZMzgBex77Q51hM8QkQ6h46NgPBJJY2wFhm/W3Oy+5w5QFKRP5BD6eLdUSHW+9pGrP91HPa77sScjmTMwZmhqu+1u/jmZ6Z+teg9Vc0Pc6gKgfzcgoL32o696X2x8W4JlAJXlkjG1KiqNY4Lg+mwGGghJrEFlnoSLIVU/jcsNpabVHV+lMM6YzMqQ71hUb83sUkfQ4Fzv/l2xdt+v788NRTt2K5NrJNnE9BcTGLtWOJ0bPOcV9qBIbiIahTQ4rnX3n7M4/GMwDad/dhvGxJwnw8Mnrd4abaqTsf6DVOBy8QEFepW5AeJgKgG00UyAzAN0dJqVXOBk8QECcIN5l4xDdP+WIp1nzNKI7HPHyIATSpnWroJxbU8CDOYzqB8g5GwCrDoNhlLyx4E0sKjfhFpjf3WBe55Nd3rrQb+GggEohpyvz9QmJ9f8BhwJ7bhhYZh98EY3ZeJyBki0l2sRUZUdYOqfgq85NbWGnOYzhGRDiXO63Dh9UPpWIeuWI1/vzsuF0iSMoiIOCPZVkTOxFit3dx7vIHtOZ3c+8xX1XdVNdvtGWeNvvsPvxGR5lt3733w629XvwdMALrUO/vqS3IO5E7DHPpm8a7lR4xeWCanWkeXcPykZENs1HnYRvauS4l9jJELTolh7KK/WXEadpOLWiMdk4ylk74MLYUSBtNd4CGyQxKmtDJ30Cl93jqYmzs0qJqRnJQUt3Pi8Xho1yrj9WiPqwmAb3PrOiZemauv1cc2+1JPZLcBd8dk3xao6gr30EzNzmqGfc8nY5vyVMnIPCx95xics0RkIcaMHiXWvrFUK24GZjhiZQpOxpiZpbYwqeoBEVnWs2vnM196/E9969ere2Z+QaEvyed9ue+IS9K279y1Ashy9a+uWBRyEIsqj0a1pDFhqUmKa5ghBLG0Z18sxdoLi768mBOUBhx0Dugw99xZmKTeMve8jU1PHrRjxpsTCzu2be31+XwlHbR8f8C/qedZo7dh5//rmLxhI0xEOw9zHhq5W3us/r4fi8xDt0/dulq71xkkIt+79ddw6wUzmFlghi7J5+2x4pV/kl4r7Z60lJT2Ho/kffvd5nk7c/Z/QwzyiDOorbB0a4Zbw3pMPSnPRYZnYUZ4AeYsq3uuB8sarHecClqaXvJqDZO3VNUtIvIJpkP7sVbTvsKqhnOialN+FahKRZVOKykJERkA7NMoqj5uU74I20TXuvtSgQspIfYcx3ulYN5+tqp+HeO41sAVmJFeKSIXYuOBtolIfWwTbI8x4lYA37vUWx1gaKMG9W5466l/tO/Xu2dnVS1MTkoqAmoFgype75GEoMKiosCBAwdnNuh+2vBS1t8VaOLSXBUKsYG+/bDPXGpaWYwcMxTbdD+vCAaz29Q6Y0Y4D9v0N1aUF+o2xT6q+n6J++tgTOe34zVoeeuWjPR6PW95xBP0eq2m5Q8E8oqKirxzFiy+9KwrrquFRZRbsO/nqGnzIjIKc0y2uL+vAV5R14IiIoOx9OtJmPHqgZ2nH7v/f4U5LxdgkdkeLHPRDXPC6mOp8itaNm86ceqLT1+b2aHdUI/HE1IySsEM5O0e6w8+A3MGZmK/WyY2baYkg9rjXrtR2C1U8w0Z0JBIQTssTbwWE4gfhg0jz6tXp1a3b57/21MtmzQ8bHiDqWFJoccjY70Dx3wY9r5JmEFu6z7XdsxIbgilwt3m3de93gJgXcnzTUT6Ye08H4ayD26PyFSbo1vyd2qBGdjpx8jxO64QmD2pL3DThh+2D2zVpOG8R55/c8mjL0z6qKCoKKuq1xYPqpvBHIT1lX0b45imuDaTsFpGbcxoztE41ICcsTwf2KKqkRiQ4ccOwC7a/6rqLrGhuNuxC70W5vGuUtWDIhKSmQtdlN2wtM6KMwb2D1x10chOs+YvOnXRsm/zP3zxmSvqptepm5qSfMhrDwQC+Wu+25h3629+N3zGnK9j0qtdDeti4MU40oZxQ2yU1TnYMOCYTE3nwHTDopeFWGN/hZ5Q7j3aYpt8Chb9rD5agpA7j04Njwrc/edibSSL43kdzc7qjqVlI44kKigsLBx2yfi/zV205E1gSSmM0LjgjM412G9f5O67HpgYdk1cghmZuljEPBc7X5Zi0egP2He6yx0zGRsEPRO7vlpiTtNT2Hc+aN2c6R+2bZnRC4vMF0tG5t4Sa+qFOZCz3DGDCBONj/F5QmSexpgxakyxuEJbitP5vTFN2vVT/nzfo2f37zXaE73mfXDhynWd+93w6zSKr8cfMGdgg4ZN8hEbKt0X6yVeiEk+HnFNiQlY9MMm6eSH3d8RaKmqEWdgJowmBGZPSsbS3Gdh17FXVYP+QLDI6/V86REZ5R04pqxzRysdx01KNgRV3erSkT1x0mxqWp4fEocaUFmMpUMr3CQIEemP1UwXYZvCJuwi6yoibbF07HdYpNkU25xeAUZ/Nnvum5/NnuvDvOb6XYaOuGfaS8/cemqvHj0Bb9AsTVJajdRVKSnJQ0Rkm8ZgpToDvc+9T4WoH0nxeK2ZcRjLOlhUCRaJVrjyEFg9F4sE1rt6UE+gj4h8ixno8k5eOaKG6SKFOlhLRLy4D6u9RoTP6/V8/Op/a9Xq1Lsi+8saYJmY8Pr4oRqmO8drYQSZnSLSCTNEu7CIczHmFC3Eoq4pWFS4G6tfno+lSB9X1RkichEwv91pZ+3DWkWOgDMwC8XGoJ2BGaePgTNEpG4sB8QZ+e2EpZhdRNgQO79zsdpoHnBSks87YmDPzDGeKMLrAIFA0Ld9z97HsZFS67Fz+jABCJch6os5v99gcoURnU937CCsP7bkORdp/Fj45/teRD4DzhabdvJjNJpPYnvLIcdSRDxJPm8K9r2+AJSm3FTlOJ5IP+H4GugmYRM23AYfUgNqEPHFrR45AvghHmMp1r7SFdugLsA2pNmYx90E6zs7C/seZ2LGcTF2EfqADzBveSeWTmqLRaQTX/j7o7/o27PbSY50IF6Px+Pzer0tmzfr9sHEJx846/QBl7qLNBY2UNxfd1Rw3825WPF9U4zjRGzk1GjMOXj/WBnLklDVH1za633MIFwmNjkiqu5prJcjzGBKMdFnThkj9tHEuI68Xq+vZlqNit4IDqtfuihcwtbdBNgR9veXWDS5DosmB2Hp2CZY5HkQi0K/B+7B0qH/dMayDfb54qqVq+p24G335xDsemknIkPFWNdxQVWLXN3ve+za+gab3Tl5yMknaWpxYiYivF5Pyjn9erVS1WmquibcWIpIXbGpLyMww/66qq6IYSxTMLb4VyVTzA4xDab7PNlAyGg2ibn4EwyB2ZOaYPNWow2GTgVGBmZPOubM/6PFcWkw1WTpVmDpkfD7t1CsBnQYvdwZhPOBbaoas6FZRGqJjZy6GTOWy7CT3Ye1tgzAjOcnqvqaqn7tNgofZnRqYH1p32EbUSuK6fFTbrji4n7nDx/a0ev1HhGZiIhXRGq//uRj57rPEWvs1gYqwGC6dNpwLOqOWgd23+n5GPvyPVVdVtEp2Hig1uz+BZaeKwJGi8hwKWZQx/UyHB5h9gR2lqW+qNlZHlUttU/RHwjUFpGTRCRDROrI0bdCRWXIhj1+KIpxNeVvsGitHUayqImlnldj5yiYh98eE06f5QzxKRhDNO7f2Rm7zzHH9nSsVSUZywCVVXAkdN00da/jbVivzqYkn69U9nlJ0RD33Q/DWNw7sXrosljpffcdDMOIgdFmeZZqMOEwo3lOGc/V4x3nc7haUzSMPsbrOGocdynZMCzGIozGzlgBoKrrXWQ4QkQmqzWUhyLL7ao6J+Ib24XREiMrNMWIBtspFn8OYl72PMwYbojw/DMpnj0419U8hmIbe0tMRq3h7dddPcITg/ouIt46tWoNHXHG4EemfvbFeWJSgEdckKq6R0SCItIwiucbLwZi33tUR0JEMrHNcwlGuqry4rcjJM0TkW+wlOJwMQbmEmBztDUGZk+St37/67Zzlq3sGJg9qYlv0NhcrBb7dqTjS8JFoy2A1gdWL8xJq1GjbqzjCwsLs7EaXVss5VtDRA5g5JZ97t/Q//fH8d02xgxgCCUZsk2x6yMcy4ERbTJa6K9vvX5Y/149G/Xo2vnUrd/MalczrUang7l5ip2j76u1fIAxVgtiZRxiQVW/E5Ht2DXgwz7jRSLykaruifNlkjGj6VPVHBEZtmjl+k+gVGm6AiwljIjUwuqfbbDvYXak6ykK+rj3j5WRSsbqrKVCrS1lBmY0p4XvXScwalG6rUkitgJVtcBxazC1RJtJicfC1YCmYfWaHao6+4g3NNJAiNVXiNV5NmOedk+Mafi6qm52xzcgcjvCAGwz9GGGsTnwE8wItcQ8y93AuW1bZjSRUnrF/AF/YOTwoY2mfvbFVoyafoiVVwIbsI2gXAZTRHpgEcl7UYgOtbC6bQq2mca70VUaXC1vuYiswCKovpg83FKMwHHImLihv3++8PRTW4w4rY8Cv82e/OyKp96d/n+/++/rB6K9h/seWrlbM4zNuamwsOivaTVq/AZzlI5AQWFh0fsfz3wfi9JCbEwfFuWlY+dMSWMa0lwNN6Qh4fQULIW1N+xtvBTXLz1YTa5kb2e3J37/YLvrrxg7LhAIeFJTUjxA+7rptUdmL/g8ePGNd7z16ey5c3A1Svc6fTHiULnhau1TKSaH/QBcICIzQtdUKUjGvp+tYszmlNWbt6wG/h1UvdMTJWJV1eDsZSv/O3SQDMQM/wrsOo42lP0IuHR0J4zkE8tAxxVhhq1ts4h8ju1PH53oRnNXzr71dWvVCnq9MRMruVSCctnRojoazLLUj9ZgTeMdgptX+DHDdxAbnzTP1SnuxsYNHWYs3cWXSbH6ST62gRVhkeS3mNcT4PABzJH6MLtj/VyKEYI6YeniVPceq93fXYH03Tk5WqtmtHS+Icnn04+/mNMKi3RrYkZrZoRDN2A1qUgKRTHhNoQeGGnniAteRDq7dS/DGJ5VMYYrbrj1rQXWOmZiD0yKbTmQ5Z/19k+wEWxpIkJykp3+jevX7fXAdZc+H5g9abV34JjlcChj0AgzkK0x73czds59Fvq+NDtrLTa3tSNmzA7B7w8U7s3Zt+66X96XD/xSRCZjRCU/xSPRDoMcPtUjHSO+tHP/T8U254aYQxAypoUUXzchQlB4za79b26/6ZKbrr50nIj4knzFl31KcnJKks+nU196elT3M0fNXb1+Q4hl3gXYWxEEFRcxLxPrrTwD2xzPFJEFsUoADsnuM23FUsdLVFXP7d/riWfvve3iJg3qZYQzZVVVi/wB/z/fnPLB3U+8OAjjDLyhTgg/XogJZwwGPorjueFqRHFBVTeJyEws0vxIVXeU5fnHAxwHo1tKclKjPdNeKvB6PbE2vSBHOei7MlDdDOZh00pKg6rqq0/8dfvgfn2nqGprsRl2AgQLvlv6qNfjWRUIBve71w0V7ztivX0NKJ5GkEtxT1auO7aTu79kikwx0e0WWJTQBatr5mGbaqgvbB222b6FpccKMcLFP3ft3vtds0YN/5KUlBSrnrN11ryFz2D5/w2Ysk9fPVK6bxsWlZRpRqaYRNtgrJ/sQInHQga6BjBFVXfH+7rVBWoM4+/dRduja9uW1weDwcc8pnt6GDxmHGsFgzrRJzIWM5CtsLTeRoy4sj1iBJ6RmavZWQMxQ3w5UFhYWJTs8Yhnx+49r5189ugZefn5izFn6RJgjYh8qlEa2Z0x3U2EeZXOmA7BHLhcio1pY8yAFmCs7VCfbg72G572wJ23DpcoLRiu1pf8nz881O2MS8cXuPfpjc2hrTCo6dy+g10vmdhg+HpYijRSdiNEEgqRnOpho8rqAcPO+vlD5y9/+fFzgV8CrYJBDWbv2PnNr//1wpq3ZsxZgUXh87WMrTyuhHM2NsQ7nuivTBFmCM5ohkeax73RdI5mBrbH1gdWFBQWvZqc5PseeIfIxJ884BrvwDFl/g4rG9WtD/MsrFk4LtFizc7qCMwPqtZxm94h+P3+/PWbsqd2GTLiMkzyKg0zcIpthKsp7skK76kSd+w5WFp1P7Zp1na3UFppNZYK64EZxJYYo0+x9OuvsVrfW+51B2BGWtJr12q0cd5nf66VlpbuiTAvMhAIFLzw1uR/X3/X/Y9gke/5WAqwGcZiPSx1IdakvkdVl8XzvTmDOBpjhH5X4rFOmJzbcvde1TqqjBd7P37512kpKb/1ej1RnRS/P1B4y5+fuuN/H3w6BxNJKBP7V7Oz0oHuD/zl8QFvTpm2ZNW67xSL/EdiDO7GWJ07iLUczdUyqv2IyEjsvNoUdl8d9x4fYbX60PisDGBwi6aNN26Y++kj3lJyYgWFhatS2/XsIiInAw1V9ZOyrK0sEJEMLNqsjzmr00qmS52BvxxzgjdjUeZGjLH+tRaLlyTXSEnuXlBYNCJoRmcj5mS2wJzlT+I9j931fxaQp6pflna8e87FWNahXI6lWDtTyHk9Gi5ClcE5WaFgJIBlpdaVKIcMBh7HMnCFWGS+AfiFd+CYjyt7zeVBdTOYZ2M1p/go7NlZH1Hc1nEEgsFgwZgb7/jLe9M/S8GihpkYEWAr5nnXjnCrhRnU3timswRYhRnO/e7+rVjv4yiMBDQQ2wS/x2pAF2D1nwddrbUlcDuW5t0ItLp6zAV5//6/B/5dq2ZaqhQzekOGe4KnZdcpmCc+H9tQznOPN8TUYg7Vf8RG4/TUEqo1kSDW3zYKm/e5JOz+NIzRWBvrWTsuL9xoCMyeNBGrKUeFmt7reO/AMe8ezXs5B2Yv5ly9jaVXh2P9jiFGcj3sPFsELIsnCnKb+TXAqyWcvHrAWar6hohcjQ3kVux3/up3d91R657bblgQQdruMOTm5W+t1an3Rdjm/R52jh84Vk6TWP1xMEas2YapK+UEZk8SYPD+3LyRX3+7ukfWhuxl9z318vLc/IJ3sOtgqaqucJt0N8xp3Yxdf10pHim2CIsUizCDFo/EYy9sr3g/3shURK7EOABRa+BxvEYb7Po7roym2zdOwjIG27BzOWZfeGD2pA6Y87/NO3DM6mO/yopDdTOY52CqORtKO1azs5pg3kn0iCEQ0FnzFn51xqXXPIZtIIOxi2obxQYw/LaP4mkOI7AI8p3wC0FETnfHdcaisK4YqWAGZjzPwDytle7vPpj3vwgzfJ2wFN/p7Vu3nLFm1rTewFWYoVoIPCkZmd+796rrXu8AMAdjG4aa0j8IXVgudTUOo8lHbeR3G+45QK5aW0bo/g7AaVi9Z9GJElWGIzB70j+B24hM2AIgqLrfI3Kxd+CYsggXHAFHpKrp3qtIVee77/hUzBDlu/93xWruikX7MdmoLr18lqq+XuL+BljrwzQsc/AmZixXAGtr16p56c5lXz2V5PNFvVZUVfcdODCrXtd+z1Ac9dXGsi252DkYuk4O+//Rni9iovQXAp5/3/XTz24afc4LQHNVrSkiUljkzxch/76nXv7L31597wMseumKkfK2YhKBe50BDRHtmqr1kXoxI7sfUx2KuuE5x3YIJogf96QhKSFLWF4cT0bTlXS6Y6WLtcByNT3oExrVrYZZlraStpiHHktlRXpkdk7D0qf7sGjxdGzUUiw1oOYYIaNRBK8xJPm1EGOXnobJ5n0rIgOxDWa/W9clWO1lJRZxtMAYvcOBZWs3bMrG6lHvEQFuE5iMtXNciE1o6ebe4zwReVdV96vNyPwe84xXRftcWKrVh/WqhlJeg7Da6glRQ4mBN7DoLCp1PRAIJLccc1PdbbvHZmLppPJugDnYb/0VxghdpKprXSr8PGCyqs4RkU3YBn0QGOjqjnNipIIbcyT7FYr7MEMDpc/BnMlvgZH7Dxxs/PWiJXP79eoxJCkpKaLDoJBbUFD4J6xs8FzovHds2ZoUZ19qY20rHdz/a4pIHhEMKcUGNWakpqbRvKVjy2ZXX3HW6Z8GVWt4bEQcAMlJvlQg9Q83j7uvXu1a30x4+pWTsBLFhxqmSKWqfhHZg9UUa7v7AmJM+REYk/0Iprz7nHUwp2N6GY2lYKnFMk8lKglV3eA+83kiMlXjGyJeaXCftTVmKOtgAcOckqn0ExnHs8HMIY7116+bvkHDBtuKSC7WrxdLK7UFVoiOVPDviUUIRcC1wGPugu+N1Tz3YGmgt91tJLbR5GF1rFMwQ7/kyJc+Em6zmSs2NHooxtIMYG0v54vIO+6E3YARQCIaTLcZt8Q266BYj+hAd/xnZSVGHIeYhRGxQhNlDkNBYZF/1abvX9m2e+9XGJGrn4hsAFaWgym6F6jrHJ6QHupaVV3ijObZYm1C2SLyFubEJWPnyGgRyQK+0SMb6kMGsSS82DnRzL3XKjWW+OnYObPv0lvuTF/68eSC+nXTkzwez2GKO36/v8Dn832c0XfobkxO75CT6KLHkBE8As6ghvgBIaPaBDOotYBaIpJPlOgUI9UFVHVf0Zdv1VDF54ki7CBCyqVnDrxrwtOvXBbDuduGGfhDjpEri3yITTY6VUtMJnKR6dlYf3VZf+skwB9PujceOKMpWB95tTCarozTGXPW87EI/7sTMRNVGqqj0k+8P8JKzMuMiqIif/68xUsPq+u5yHI2EdSA4JAX1dytY0eJx/pitc/9mLF8yhnLTGzTS8PqVm+o6kzMEzsNM0hfYAarHVYjLNMFpqYS8jZW+6qF1UIzsAvLS/GMzCOcCJdqCrEeRazdpi9GtJj3IzCWeAeOUWxTXFvkD4S3CfiB3G17cj465bpf7cJ+v5nYJI7dwGCxmY49o7FMI2A/1rrixaK8bmGPfYURHoaKiKhqgSPXLMK899WY4blUbGpMOEqO9AohFGEOwRzJzx1x5zqsHeWcrdt3zrzgmlvuDKpOCQaDhX6//wCwz+8P5H63+fsXzrj0mmv8gUBHDhdEKBVqw6EPqMkWrlbVRar6uapOUdXXgOewrMrXWG3Rj7Xr9MRUsa4RkatFZHReQeEvvF5PVH1Yj8fjad+i6UD/rLdjGZGtWPSTJmGG12ULpgKtnHMbjiGYylPUoQ8xUC6GbCw4Dsds7NouTR7zmEFM8aw/JmvXFBue/a6qrvsxGkuofjXMkZhnHVV0PByanXVZUPV/kSYWBINB/779B3Y17zP4rvyCwr0Yq+6QARSRblixenIJAkUDLGV6ACtgb3L3d8Y203pYP9jbqjpdRE7DmHxzsSjmTGyz7Qj8FEvXLpLisVFH3agspuXaB4tyO2Gb0bRLzxx43f/ddFX7ts2bgEWib/oGjU3GotzpWJp4EFZzWBAhgjnhkdkmo/74EcPu++UVozt4PNIAq/P92ztwzBKxftpLsO9ucig1Kqb92QWL3rZgzlp2rE1DRC7FMgp7sfPj0Kgr59Scj0nTfR32nFpYROjBDO3JWDZiDnY+Xg08X/J9xRinl2LO2P/DCBgTsAxMTcxQ7MT6bfefMbD/RXdcP67mGQP6bWrTf3jHPTk5r2IOVJ6WY67s0cA5qGlA7fzP31jh83rrlfIUP1DXO3BMRHaxi+DHuuPe1xKj5hxJ5QIgS1WXunpzB+z3LrPj6Azamar6ZlmfG8drt8PSyFO1Elu7xGT7emCZtlXY6MSjHtl3IqA6GsxFpbGswo6v9c5z/3py1FnDLhYRxQyC+gOBvPz8gp033HX/zW9M+aguZiA6Y+0g88M2wlOxaHKKFo9F6oF5qB0wZZA8tyGdidVBT8EiiP9iEUt/rOazyJEX2mBpi5Ox1oR3XKRxITaWqrRG7bgQulCBJnXSarRb9vI/ejdrUK+/gsfr8SRhtSPPax9/+fK43/3j75iH2BiLbn+M0xIAcA5OoGRaLuzxTGxDzcE23C1hjyVhqfAuWJS/Ckt/HlFzdAS21WrycCcD6Wr6qqHHUzFizrfhkY0zIKFB3HMxo9fXrcejqu+Ev49mZ3Wd+dW8W1asXtfrh+07Pnr038/MDgQCd2FGNxcjACUT5qg5Y/4pVrvujBnkURhprEp64USk0Z7pL82unVajY6zj1JSDaruMQbTXuhKLuL+ItJc4x+QCbD/IwByJcjFcxcbE9VPVyeV5fhyv3x7LUh1To+mi8TaYoaxB8Ri9at8bWZmobgZzFGbQSp1O7rz0UcC64OYV24AbsAhw3/4DB19v2P20hkV+/ydYSqoflmZriKXH1mCRbL6IDAVSLx522vTXHr5rwKpN39/XML1OjZUbs/cP7JH5C9+gsXuwodWhFO0AzFvPxTacF0MRsduI6mLp0qbYhrtbbM5nDVWt0F4j9x30W/LCY891bNm8Q3KS74hpEP5AoOC59z959ra/PP0K1oj9o4sqQ3Df11VYdiCWDF5HLF3ox1p4VkQ4ph5mODtiqduVWF0n4B7vBxSq6jfOOF6OtYOEz2EMzXGdpUdqE9fHGNL7sAzCxVhK/zVgVXDzikbA28FgsG8wGPQhIoFAILhrz96iy26585vZ879Zj41MakJYv60UM0mfx8hBa3DSihrnDNCKgsvmtMciY/3k8d9mDul10q9cFHgEAoFA4Otv18wYfOt992GtJREZ4SJyJhYdzVUTl490TDMsCn9FVWcdxWdoBZykqh+WenD53yNkND/QCpamFBNp6ILtiwew/uAKG9R+oqG6GcwLsdRpqRGQuyhUow9tbY956e9gm8ZwrIl8A1bPa4+dHN92b99q1Gf/fPi3dWvXbK2qNT0ejwSDQb+I+L9avmr20Fvvfz+ouhCrUzbHCDtFwJfqRBbcJnsn8Azm0aeo6hduHadgVPUK99YCsyedHAzqHI8nen0tEAhu83o9zb0Dx/wo6w4huAxAa1WdFsex7SgWGVhNbDWa1tim0wjLZqx0/2/qatmITcnYpWEENHd/Q4zBOU1Vt5V4zIudOx2w+v5yoFVGs6ap6+d8/KjX62nhot5DCAaD5BcUFt37h7+N+ef/XkrFooRw0lsTjOz1EZbG/RDrZX6tMpwp52iEjKQPI2KtU9WdgdmTUrFWrE6UkBlU1YA/ENg/5Nb7H5m3Ys16LAu0GpPKyy3xHidhn3Gh2nVbcg0hZ3sblmaPa/B8lM/TATunPi314KOAe5/+VJDRdCWibpjDtxkrP53ILPkKQXUk/cTTXHwydsF8Ee0YVV2H1X+6uoj1PSzd0BNLQU3GNrVLv/jP7++pUyutk4jUCo0E8ng8PhFJ7dulw+Bp/3iwH079A0txNcEi4ZCx7ILVlz7ENswuwAKxPsqBmNLIsUptXOPxSMwRU16vpyaW1vuxoytWsywV7redjhnMFhjD8ginRI3huV5Vp2KkrHwschuAzWwN/TbfYoPGpcTzd2I9vGe786Xka8/FlKMGYP2RH7z//H86qgablTSWAB6PhxqpKZ5bx19xB1YjXVrikAZYhqQDpnTVm8iM3AqDiKSLSG8xRZwRGLN0pqq+ojYabyeAd+CYfMwp/Qj7HkNM2jwRWZjk8/Wat2LNa1jN8ztsv7hERAbJ4QS+be6YaC1EgzCd3NnYNTvQRYrlQYWTfiJBTdVoLsaML63OGxUi0kxMIGY0lkF5S1U/SxjL+HDctZW4E7sbJihQ2kU+G+uDW6c2GuhdrO54NsZc/fijvz84vEZKcndX9zsCyUm+pEE9Mi9qkF77F7ty9r+MEXmy1ZRGPNhG1gITRPgCiwiWYxfRCMyw7nTH+sp580Z7LOvVf/bv2LJ5aYN5A5hz8KOFIzIkc7iQfkyo6kYR+RhLjYZGU03TKFR/l+ZdKCKLsAjqJuBKEdmIRZ2FWFp1U4nnbRabvHOe2Ei6kn2ABzEnT4GxXTq0vSopKSkqm1REvB3atBry1KO/jTSSqiFmMLti6djmmOBBhcIZsHZYNFkTE0KYhc2jjXqNeweOyQFGB2ZPakHxWLB53oFjsgBUFRF52z2Wihm8NsAY9z0vxlLkHpyubol1nYR9B++619sl1qd5rpjGb1yEwzBUisEEM5rO4Tq/Zf30DzY8dtfZmARnVyzjNRX4o3f8hMOYzm7vaY/VxpNw831/zOWZ8qI6GsxYzMO62IUyTePQ4FSbFxmaFDJTVQtE5APMix0lIh/5Z719NqV8D8Gg8uit42rf+IcnfoIVxL0iMsS9rmJU/+YY8/EUzBMchZvxJiZoIJhHV5ZbERbVRnvcG1Q9PxAM9vF6PLE+g48yGIoTFF0xZmSZ23mc0TwL2/TPF5FZsVJ47j3Wici3WCajJRbVtACaisjzJY2iqq5yZJRzReR9tZFlaHZWSoc2rVqs3bDpB1X9TES6FBQUtk5Jjj232uPxyI1XXVITM/ThaIidr8lYKnlhpFRzeSDGUA0ZyTpYFDgX+KGs37t34JjvgZcjPeZqlx+JMd3PxZyJ1zDW+yiMybwH+77D19cUi6gnhxsLVd0e+o1FZHoZSXGVZjABVHVNg1pp3o/vvna6qmZK8YD5kFDKBYGJD9/oHT/hFVc7z8S+lz1YSSrqnNgESkd1M5hRp5W41NY5WI0zktpJNCzEetqaqupWtzl87tK6ow/k5jWrlVYjdoQmsG3X3u5Yr9w6ihV+1mP1zAEYqag1Np3Ej53A72KpJb9WUK+j+x7aYCm1xn95ZfInT919y+XE/i2/x+q1P0q4jaMNsYcAR4Wq/iAiH2Hn33JsMkh9zNjE2nxygFQ1UfxljmjyM+AnIrIeY9luDhksVV0oIjWTk5POKtq4vKnP670HaL/qiw/Jyy9YV7Rh2QMejzTavTensE7tWjF7QkUkgKUzw+/zYKS0Bm5tNbEos9xwaeqQkayHEd4WAFsqyhBHg9rc2x+wWnMGllFa9vyNY67q1br5Pe0a12tX9Pzv/uQRmbdlz76/YQTAGRqB1ex+488oFpWIN0WZjGUAKg3b/33v2cGgnhShROAB0lT12WsH9/ZTnLqu1LaUExnVrYYJEQymS0OciW0usaTfjnwx89TnAoPkcAWR9cCuFz/6PKPI748pa+XzeNm+J2cB8C+cZB4mTvAGVjBXLM2Wi+mxdsbEmHPUGtOPyliKiE9E2rnaw5XY5r8KeOm/73/ykkfkBaJctP5AoPCZyR8/4Rs0NqqG6o8AnSgxlaasUGvJ+BCLVJdgGYWzItURw7AXM1Ch1wjV0pdh58vJWMr2VEfC4OLzz5m1YsaUXwv8GyNkeETEk1YjtWMwqC+8+q+/3vm/Nyatyy8oiJpOc+fbK5KRWfK8q4udJ+0w4za/PNGGiKSKSKZYG9hlmAO5BHhJVWeqaswe1YqES49Pwq7BMT88fvf9Vw88+d9dWzTqWCM5yecxxu3QRnVqvrnqT78YriYAEu21srGyyrkSv2BAmWdhHg0CEx/2APfEIvkFVZPuvWDIKKwt7vOEsaw4VDeDGS3C7OceK2+EsA6L9E4XkX5i7R8XArlTv1r4uxI8jCNwIC9/1+NvfvAkRpzphtHVQym5TpgX1xfzrIcDXx0tk01MS7OViJyBEYoyMe/9FVWdrqa2Edo0b9mxd99EfyBQqNZgnIsRJrYezCsYe8ufn1yLec7VLaNwzOGcrbjJPrHgyCkfYO1La7Fz6kKJoBjlsJcwg+mwAovG1qr17n2AndujRWTkXTdf+/O2LTP6er3eIzSSk5OTkkaeNbTV3pz9PwA/BIPBI4ymqmogECgoKCx8JMJ6GmKlgTRMgD+uqUBgmQ0R6SQiI7AWmRYYkeklRxrZWFFZlLJCVf2q+vmbt18erFsz9R5M5eewizrJ601p3aDuZXMfvOnaUl5rA5biHVGShBUFlZqSxZyTmKQfr8fja9+4fh8t49DsBEpHdTOYR5B+xNo12gCfltVrdRd5O7Feywysl82HpU9fUtUvps5ZOCM3v+D+wiJ/RI+9sKioaPP2neOxGlYjjCARnurqgpFqQp77VlUtV5pLDM3FNECvxjbmbZin+IGqrorEtvUOHBNoNvLaaaPv/kM/EbkB+AXGgmtR/5yrp2CRUT5Wt4019fxERAusH/Ko1JVCcI7Q+1h0uAsj84wWE+wvib2UMJjOodmOGU1UdY9jwr4ErOjcru0dYXWpI1AjNdX72G/vrfnL3/1x7Ladu9apap4/ECgKBAL+oiJ/fpHfv/mOB35/T432Jx+q32l2VrJmZ3W+dfwVPX0+XzpmMCMKN4RDRJJEpIOYCEN4ZuNlVf1EVb+rTsSRi/p0vdoXhbwH4PN6Uls3rHuviIwRkTYljWoIzsGejxnNaM5QCMlUgPB6vNhzMM+jqvFki37MGaVjhurWh3k5NoEgx/3dCJvuMCXetII7wVtjY2eaYAZno7udhOX4Z5R4TvI/f3njE1eeNfiytNRkHxAQkaRtu/fu+sXfn/v8nc+/XoLNufwaM4qtHAGjGcVMvrW4aSRl3UQcg7O9u+W511qncaqPuM36dODNWE6FmIZmZ+w73luWNR6vcJv9Ri0xdLsCXrc2RvLKwlinZ2A1zRVhx9QDztYjx3G1BE5R1Unh92t2VogYFtORVdUD3lYn3QZMu+GKi8dee9mYDqf1Ofn72fMXrR1y8U/SgsHgNqB+hzatt6/+8sPzgFsBj9/vT8orKPDPnr/ojXOHnn6DZGRG6iv1YddOe+x83orV7TdGctaqEwITH96L1SmjQlUDtW78XYcCf6A3xj7/Blgf6bpxjNoeWHklmhTfWEzc4piN43JObkugZZLX03L3f+77W43kpLoxnlII/Mc7fsIvjtWafqyoFgZTs7NSgVFTPpk56tRePWY1blD/NU/LroWYws5sjTEf03mJjTAj2RrznjdhBjI7xDZ0xyZhzdqfaZiakFiryvBkn2/3T0ef3WV/bt7pO/bkzJ361aIpmILQfuBJtUkC7YG2qvqJi1ybYSnQdIx9F9dMOFcjCRlJxTalteUxZCJyATZVo9TIVkQ6YSnuTzQORaXjGY51OhaLiCo8EnKR4PnYb7cGIwVtxYkciAkPXAP8L3xDdufsZRgB5RCBTbOzRFULS0ud5xcU5Kd16HUVltnIw8bVqXvtZOC0+nXT2y3/9L0JjRs2aO7xHC5oHgwGcz0ezxTgcsnIVLfOlti52BKLgNdjykXHzeimwMSHczB2blS438XnHT9BnePSC9szvsGG15fU6e2JOZnvR0pxisgVmJhAtJFsZUbYntbK3epgLPdNwGb/87+7NRAMPuL1eKKNNswDunvHT1hXUWtKwFDlBlOzs24E/gZoIBCo4fF48gHfvMXLpp5x6TW/z83Li6bUkUFxJJlPcRS5PRaRQUzBpTemvBN0952GiZnPwoQGGmNKI5sxAe3hmAjCJMwwdsTSutdgqY98wlR/Yrx3HYqNZArFRrLc3mm80WWJ57TASFRz1BqiT0iIyClAkqrOOYbvUQMzmpuxTXcY9ttOV5NevBzTcd1b4nk9gIYaplQlIg03z5vxeYtmTbpGe79gMBj8dtXaJT3PHv0UxpReiRm4QzdVPbh29vRHWrVo9qskny9i/4mqHvj6m6V3DLjwig3YdbQTM5Lrj4YcVZUITHx4KtZmEjUduT3nwIbmP//THRjvYIOqHnCZol5Y+nwJpg98yMESm1LUBjOahzkQIjIeK5kc1XcmIinYntYKc1ryMAO5CetdPXRtp6el9l308K1PtW5Qt3N4+j6oqigFHo/c7B0/YeLRrCeByKhSEohmZ10D/B3z8PB6veDUOfr0OGnEgdULN2BtISFvPhRFNsU2h42YSknc3p2qrj+tW+d+z0+444nA7EljgfoHZ7yW/9WyVXN/+9/XPV8uXlETS4kmUUxC+trjke6/+cnFd9580Tkd8wuLmhYWFZ172YS/5ixbt3EXJisV0Vi6dErISNYhzgbuMqAPJlgfd31XVb8XkSkYG7CWVrKGaGXAMaK7YPXGYwY1cf4pmEiFD1MH6ouJHEynuI65t8RTVwG9ncHNxxSoLrz30ce+f/YvD3dMTkqKWIsLBoP+mV/N+yvWr/wAFmU2drfOGLEtkLv2m5ujGUuw6Lttyxa/xAg8X2sZhiZXY/wRG9UVsU5fFAgUfPLtuuex77459v3vx4znbMzR6QX0EpGlWN9ukaoucE76CLE5uoWBiQ8L0PaSU7u1+e2YM8q1j7osUyiKbICJwW/C2MsRyzFiAyNa/+Spt4d8cd8NowPB4L1AF0GKCv3+j+96bdqCJz+b97qOn1CeJSVQCqoswtTsrCTM6NWNeoxqweW3/vLCN6d8FJr4Hp5qLVc9JTB7UstgMDg/qFrf5/Ue2pQCgWCgoKjIf/VvH/vbe1/O/wi7gOoA51ww6JQ9z/3mZ0/VTqvRxOv1pHhExO8PFCrqnT5v8UsX/voP14czBJ232BaLABpi+rVrqeDetPJElyWeXxPzyLcTRSv1eIVLnWeq6pRKer9krN6+B/gSq3UPxAhi61T1iIHhIjIYM3jtsMg0H3g+uHnFmcD9wWAw1ePxeMCYoIFAMPjF1wv+Mfzya5dh0c7eSGsZdfYZDd597l87opFawrBbMjIblOfzVlcEJj78W+CXWI/pIRQFAgWBoL5Q96ZHnvcHg+2w63sjxUO322Df/wZMKagtVsNdDix3qfJBQP3cZx+sl+zzPqSqjYsCQU+yz6vAq8Dd3vETomaLXEmoBRZBtsJ++01YduKH0soGLhPWHEsB57v7GgLjsQzXPLdGVZP9S6CCUZUG8zxMnSNqzSEQCBTNX7L8iQEXXvFHSqQlyovA7ElfY1HZEWIFwWBQ/YHAluSkpJah8UF9urSv8fE/HlpVO61GM08ENR1VzRWRG3yDxr6FRb8dsAg4GzOSm48V3b4stcsYr5GMpZyDGBO50hh/xxLuu1muZWidqID3TMLqmLnAzMl/vPfUWmk1/tqldYuMxvXSs0XkNeAFJ/8W2gAfxGrkk7He3kKAzfNnDtx/8OBjXdq3bSUiunnLD4sf/fczH/7nhdf2YL/TFvcaHqxMUC90S0pKqpe39pvXQ7rIMfCDZGRGYvce1whMfPhs4DfBoA4UARFZNGnBt29f8cQbC/2B4Kdiij9DMJbzLJc6FyxKb+tuik0nqo3tUSuBpQt+e8sz3TKaXOI7ctB1IUYw7B1uNEUkneI0axPMOd0MbIqXr+DWNhBzvj/UwyfetMJKAktUdY6YSMelmENVoZNNEqjalGxTIhitcHi93qRde/b2x4g3BSJSgNUSCzBvMM/9W+D+nxd2X677148p7fgDsyedhOkpRnxfj8cjyR5POubtfwYw77k/D1PVetGIGCKSlldQ8HePR1KCQQ0xCo+54XHRZZp7v3LDec4fYZHqBSLy0fGennOprnQsgqg0qGqR+y7PnvXk75/rd1Kny4CkEPNUVXuKyO82vPP0iLZjbuqODfY+APzVtZYcQqtTh+0CfuPIZRmY/nEqlrZrISYLVxfb0PdjKd89wIaioqLtW3fsXNqscaMeMaLMIuCNCv4KqgW84ydMB6b7TOx9pqruvPQa8WF6s+1Udb2YHm1fTLx9jmsl2eZuc13k1hZLlSYBfUb3zryoe8sml3g9RxhLsPaSpsGg/tEn8iDFqVYfFkWuoBxDGNzvNxg7n6dGeH4a1tLmBZMNFNMyPg3Tlk2gAlGVBnMblpKIimAwWNCyedMvsN7HGu6Wgm0cqdhmEfp/CnbSJru/k7HPF2IP6h9uubrDzy8d6UuOXB4CQFVrfv7NtzcOHzQ2DSj6btJTv2rZuGG0qQcApCQl1V712r+XdrjklkVxfO6KQh+sfnvUUbcWywX2xnoKPzzOvdOQbmylp5hV1Z838/VaHo/nCpeaP4QQQaN+ndqfN61f98Otu/c+hkUbncOOScIM4enAThcpn4ttjFnusCCWvdgL5KhqwDFdO2KENv/8xcseHXX2Gc8RpZ6HRUT/qIjPXI2RjDnTqKpfRGYC54jID47xOldMonCIS+HPCjmLjoi3E5gvJmDQ9v4Lh47FjGc0JAVVx7VpWHfahp1712Ds5YhC/fHAZQ+GYr/h1Cgp25DBDN/LV2CTcVqp6qYIz0mgnKhKg/kxMYTWwUYV9cjs/DctmxjyIbgTLsndki8a0v96n9d7GjFOegUO5ufXwLzD5MLCoozS3sfj8RS2bd4kprZnRcJFlyFyUoVBVReJyAEs0vxEI0yrr+5wBqc9pulbJUhOSnqIEvMcw5Hk9bD0pb9/3XjENSuwCOZURw5Lwpy9A1hqfzFmTENEkCNmv4rJ1PXEeox3Ypv+FgDNzkrD5By9mPEAy8AEgTGSkVlp6eoqwiGDCYdE1ldhzsj0sPsmYY7GWBGZW7LE4VKn3wQmPlyfUnpkvR7JX/uX/7fMO35CVqzjSoPbu87E9uiPYtQ307Dz5VDWzLXOfAUMEJFKkyn8MaDKlH4kI7MIuAtLnUZCLvCkZGSWy1iCnThqWq4HVHV3h4xmkx2HIvq6IPf8AX3/qqpPqOrf22c0+5BSlDxUNQUjC1QWysyMjRdqE+o/BYaLDa093tARI1dVqiB2CIHZk5piJJ6oSE5KSsorKPwZljZrjNXHAsAU4H+YofwUE0hv6R7/PPw1RKSO2BScy7FMyweq+mG4kyMZmf/Fou3HscEB84FHgLaSkTn9qD9sNYZLZSZx5LW7EEgPP7fV5o7OxxSxeorIuRJZbanUUoVLvx+VJJ3LFpyNtcdML4UMFCnCRFU3Y+dPt6NZSwKHo0rbSiQj8znHlv0L5vWmYqkiL/AEcHdFvp934JjVgdmTFmCTy4+IMoNBDe7PzdvX+qIbs/bnHjrnn8BqqBGjUlXV7XtyVrUYdf2WyiBQHavoMhwl2k5qq+o3pT6pCuCo/WdjjtfJQOG8h25e8s3GHx6ujPd3UUAtd6sN1B537tAOz9x7q/q8sQfg1KyRGsQiwjmfPP7bDslJvn+c1q3zkyJS60Be/u4V321+fuRdj5y6e9+B77EII+DeszHWgtIMS9G+EavmLBmZG4BfHf2nPe6QDBSVbN1y6esZ2OzRLeHfndrc2klYa8lYEZmnhytEvYidZ1GlCzHhinLXzp3BPRvbBz+LwylOw8pbdSM8NheTw1yjCV3ZCkGVa8lKRuaTmJd9E3A/8HOghWRk/iqSdFcF4FKMOFHyBMr3eGTX05OnX30gL3+EiJwsIuIdOGYl8CwRpoGocf3zJzz9yjOYek5l4JhFl+FQkyJ8F2gnIoPl8EkvVQ5nLP8LvI2xfBsCzXu2anrW9UP6fBKY+PCIo30PMQH8OmL6vp1FpK+IDBORUSJyJXAdRtzpgxkw5q1YvdwjntJq80GPyNdAzV9eceHPh/Q6aUG/kzoNF5OCrFGrRmqLXp3a/mrpi3+/7f5rLpkGFIppn47C0nQ/AK+q6vzjnaB1DJFCWDo2HK4+mYWlZks+FlTVhVi031VERogpRoEpRuVH65/2B4IFUxevetl3zQOlDXSPCFdOOA/bm+IxlhAhJRv2WfZiClR9y7OeBI5ElSv9VAUCsyfVAW4E7sAkqPYATwNPeAeO2eEukKGYQzHDP+vtA9hk83spFohPBpbd/e8X/vPXVyfvxrzOhS6leUzgosvBWFRRKXUJdxEPd39+Ul3aTgITH74Zy0xE8/ZzgY7e8ROi1mEjRYhht1q4qR4YCzX8dsD9ezDS7xCYPekfwM0U1w0PQzAYzL/jsWcfeePT2d9unvzsCylJSREFvoOqBbv27vuk2QXXvYhFHEswdZpETaoUOJbrEFV9O8rjHmAMsDTaNeuO6eFuC4Cs+0cNvfI3owb/J8nrlZAhDQSDAVWCe3Pz/t309j9OwaK9TzROmUz3Xof18UYzyhGedwM2Mm6QltAmdo+nYEHC1KMhICVg+FEazHjgaiDdsRTMXFVdHZg9KRmrO9UCVnsHjlnjLqqzsM2xHjBNyzbguixrugCT7TpmRjnK+3qAQVgUV+VtJy663IRJiUVDfjCof06+7sG/cLgRPGqDWOr6Zk+qi9ULW3Ik+ecg8LRv0Ni75jz96O29OrX7Q5LPG5UwFggGC+978qWT//zyu0dFIvmxQUz+sZfGEK4QkQZYD+PbsWreYiL6Q7BWuPyJPx373lUDel6cV1h0fV6Rv/6OfQdX/n3anCnPzFywHcvKZGJR3SwtRS7TvX6KW8c2TK4yXmOZimkSvwecpTafN9JxXYF2sb6LBOLDj24+YrxwJ+1SEckGzhCR1pjn93mJ44Ii8ikmjbYfGyr8rsY5aSReVEbtMhqc0fhCRHpRPdpOmmPGOxZSt+87cBPO8GFproPudgDbnPI4cv5qqE2pIUD0NkYghmbpGX26X/fcb352R/NG9UeiBBC8/kBg76KV658+4/YJ7wA9Mho3OCOWsQTwejx5j976k7YUt5QkEB9KnVOpqrtEZDlmDKP2LKrqHhGZh2lH7xr/9NvNxz/99jPuOT2xuaDdsXOpm6ouE5HtGHGuGeZwR0zTS7EWcXbJXtw4EHL4/MTey1di6eW2WolCHiciEgazFKjqbhF5BzgFuFhEPncMtPBj/CIyDbgAq5ucLSLvlcJuKysqpXYZC6r6jZj2ZlW3nXgppSUJoHaNlFxMAi3aa4RqU6V59PGmYQ4d99nCZYVtx970ly6tW/xz1OmnNjuQm1fw9OSPt/gDAXCp2mAwGG+tKzHbsOyIWsMsgcWYE9hFo4yAExuacCYwEXO2hmBM6FD7ySZ338eYkfwujEA0BBsy/omW0Lx2rUQjMcH7BWX9gBQbzAAxRGCcUz8H6zfdFM14J1A6EgYzDrgTbK6IbAKGun/nhhtEVS0QkanAhZjAwlAR+TTe9EosVGV0WRKqulZEcoEzI/WsVQb6PfTkwVkTbgwkxWaiFtVMSZ6qx3BSSVnx7xJ/B2ZPeh2rSccaUpyCpXcTKBsO68GMBmdMZgIjXc/iYZkhV1s8F1igqt+7+97H+l7PxqI7xQTcGwHLMDLRh2qqPB+LqTKNFpEv1I0qdPXPkViJpbws9HgjTFR1i4jswiLhxeV8vx89qhXzsbrDRVRvYRfjGEcsCH88F0vTKOaB9q6gt67y6DIc7nuYApwipg5UKRCRDBE5b+GGLSNW/7Dz1VKo8n6s/7A6401iq10VAh94B47ZXknrOZGQQikp2RAcI3wpFoEdiuZd7X44li7NCjteVXU58BHG8L8Q04jtgBGzaob6PP0TxqUX3X/1tlbpNacDp4nIaS5ivQBYcZQtW+EGM55sxVygh4tsEygHEgazjFDVQjXFlYXYuJ9e4S0Xjhn3EZYyPFVE2h7N+1Wn6DIcrob5LtDmWLadiIhPRDJF5FKsf3Y98MpJGU3u8AeDS/yBQKRNMRf4tXf8hFXHYk0VBe/AMfnYxnkA2/TCkYeJYdxYycs6UVBqDbMElmK91plh952GOb/RaosHsOh/NXAq0AljyH7x5+G9by28/+olmID7pnW3X/TtgXuu6JpRJ60VJri/RlWXlmF9kZAG5DpHWkq7Bl1KeKVbawLlQIIlexQIaz/xAjPCaxSOpTfK/flGeSndVcWMjReu7eRMzPn6uKLaTtx32xWbabkNmzm6JexxqV+zxkWf3H1tvx6tml6F64PERms97B0/4dOKWEdlIDB7UgdMpONybBPcis2J/Y934JgKJY/9WCAiZ2CTguIuGYhpxo7CHMEMTCXnXY0imO6c2d6qOsWdrzcCSdt+eUmd9JTkX3o9khp+vKrm78or2Hbqs1Pv2rwvtwbwuR6F1quIDAe+U9V1InId8GJp15+7Xi/D2Pw7yvveP1YkDOZRwqVwumHqIF+r6qqwx9pjEcQ+rNG8TGobVdF3WR44z3Yglp768GjaTkSkCVZnaYGRKpaXJEu443pg49SmqKoGJj6cCvi94ydUJNEqgeMUInIulvIsk0Fy51VvLFU+OdK5F3bsIYPp/m54YeeWd7829vQ7fB5P5B5c1QKPyN+SHnnpH5ijuQ7TCS7PPNtR7rk/iMhPsH0iP47ndQa6qOrksr7njx0Jg1lBEBspdQZmHL/Q4gGvJ2Fe61pgUlkYatU9uiwJETkZiwo/8j//u1zgCky5qRk2e/A/wPPe8RP2l3ieB6v5dsdqT8uB1TE8+7q4SCDWhpbAjxciciHmwJZJi9qdWw8A76nqzFKObQ70UdX3Q/d989ORn3ZrXHeImB5sNOQAjZIeecmLjRJMwkYClkn/WEQuxxzUHBG5CjPwpWYknJN/ESbaUK1KPdUdiRpmBcERB97BLoaLxQa7oqrfYnTzbhjFPC5U19plLKjqYmBel2aNLi30B5YA/8T61BpjtaFHgazAxIdbwqFJG72AK7HU6yLgdVVdHsNYerBNZkHCWCYQA/G2lRyCEwI4F3gZaCU2/LlMaF+/dttSjCUYo7W5c6o/wtpSxohIyzK+XYj0A3EwZUNwzP05GMci0SlRBiQMZgVCberB19ikiUEiMkhEfK7HagbWo9UzzperVszYeKGqa+c9dPPFXpF2HClblwY08QcCHyZ5vYOxml0dTLZriqpujKMNpydQoKorKn71CZxAKBPpJ4wRu0FNS3YR1hoWqwdWKdEjm+z1lBolBoLB5NGvz+jnMjItsdLDJ8BgETklHgKda3chrGYZsxfziIVb5L0Nu54SiBMJg3kMoKo/YO0nSdjUg0bYeKa5wGUiEnPG5vEYXYYQmPhw67SUpIFeryea5+pT6PDXK89rDbymqp+76LxUiEmZdQe+qKj1JnDCIq4+zDAMwkaBfe3+/hZjuneP9wVExLM55+AnhYFgzDr6gUJ/zkdrt+RjzmI3YCwmr5mL9XDe6FqoYu3P4dEllCHCDMPXwElSLC6fQClIhOPHCC6lOEMs0joXuwCnAunATSLyV7VpApFwXEaXDsOI3VuIz+Px3Ta8X5s7XpxSKkEhBCmePv91PHWaBH68cClRT7xKWyLSHSsbTA5lOFRVReRzTHBgU5RrVd3zPdjQ8t7Xvjdn0Sfjzioiyt5aFAgWfLf3wJ8CVk5oh40C+whrUWmACSD0x1jT34nIRqz+v9v9u8ulciMZzDJNSVHVAyKyAjg1MPHhmW49PmCDd/yEuK/NHxMSBvMYQ1XXi8g2rH7ZCjOa9YCbReQxVS0ITHy4JibsnOO75oFkjtPo0qHUc8ptMGU993pjYujVurcygWqBuNOxjmvQEyOQHdaSoar7RGQBlpp9L4IDKxih7RKsb/bLWZu2b8m+8+Jt9VKTp3hEJMllWpyiUN7O3Py3+j03dRt2fc/FejfPcOtdgbHCF7u2tDOBvVibUQOgDVC/Z6umKeMGntxk4869KqaFuxtzUsu8n/du03zxPSNPfzYQDL7q9XhqYlG1BCY+/CwwwTt+QsI5DUOCJVtJcLWQk7CNfylwwaBOrYs+u/e6bh6RsZiHmLRrf+7Gr9Zt/r8LH3vphapcb3kRmPhwT4xQEEtNZD9wuXf8hKiC1+FwKe1zsakSifmPCcSEY7qeo6qvl3JcfUyeLuaEIRE5H/jekdrCI8phmBP8RIke4TadG9T5v8fPPbXmGW2bZhYGgjW3Hcxb37JOzXt8D784R0yQfThGXMtye0MLbH9oitU0V2BG9EzMiH3mf/53GcBjqjrcHwwGBEnKLSza8szM+a/f/fp0LyagsBIbTL4bi0aj9mWGZsoGg3qZxyMlhwDku3Wc5h0/oUzs3RMZCYNZyRAbFXTG6N6ZDSfeNPbvNZKTkj0lahWqmici13vHT3i1ipZ5VAhMfHgxVvuJVoPZCmR4x08otcXGpdfGYinq4zXqTqASISKNgQGq+m6MY1Kx1or5pZ1XrsY3BvgAqI85vXlYOrVNeD+jI+NcghnUVar6umPbnq+qr4QdVwebf7kRKzNo2Ht1BTpjRm8F0Oiyft2HvHjzxRM8IjU58rrKfW/RyifHPP7KW1hbWwN3q4elbXcRltZV1f0AgYkPn4GNBos2UzYf+KN3/ISHYn0/PyYkSD+VDCcp984z14/+aY0k3xHGEg6N/HkuMPHhMtPaqwkuxlJJh9WQXA/qAeDCeIylQ19gd8JYJlAGxNSRdU7Y2cDaOM+rXEwr9jdYe9SXqvoe5viVZNH2xc77FUANEUlxcplJ7roGDsnUvYuNkTvbKfCgqgdUdR7wCrAKczw7Pj7u/Oux6TqR9uy080/u9LNRvbsEVPVbVf1CVd8B/ofVR9dj6dpMbHLKNSJywfZ9Bx5R1ViZoFTg9sDEhxN2wiHxRVQB/M//rmW9mjW6ejyeWN+/Aj+prDVVJLzjJ6zF6kLPYp54UVC1cMPOvTOBPt7xE+bF8zoi0hToCMw6VmtN4IREaQzZ07HzMuZILRHxiEgn4FKM8b4IE2KPONbOlQ7aY2zbb4BsjEgDpinbOPx4VS3AOA352Mi8mmGPBVR1raq+987Pr1xdNy21jSd2i0vwwdFnjHbr8DnjXBvb4w8AW7CZql9j00ryaqUkdy6lbQbMSB+vjnuFI0H6qRp0xy7o1BjHpGFsuX9WyooqGN7xE7KBWwITH74NqHX+X1/wf7x83aXABh0/odTnu4bqodjU+gRjL4GyIGqE6fqg62NKPhHrUa5G2QFHNMOUu7Y4gzZWRDaqaUNrieecjkWFHTG2awC71rOwCLURloI9BEck+tz1ZI4WkWmqujP8mAt6dWnhroGUaB/Y6/Gk5hUWjRCR0Pv6McNdFOX/Bzw2pq9+tNd06/OISJkEIE5kJAxm1SDeE/C4J7h4x08IAvumj5+AiPyAMf3ikfo7Fdiubn5gAgmUAREjTBFpQ7Gg+hEtJ9EMZehxVT0oInPPbtfs4sL7r+6Y/5urxgVVa/snjFs94ydnvz769Rnf5hQU1cSYrkER2YyNDKuFRZgnRVuwY8buwyYgLXLvXx+o938XD+9757kDkpN90bdrVdXGdWquAZ6NQ/wDgK3/uuetJK/3Nq/XkxT1mJwDG1v+4s8DueaBVVh0fTy2ulUYEgazajAbS/HEwgHg7UpYS2ViDSaBF9NgOuGGtpj4QwIJlBVHyOI50YvBmPbqwRKPxTSU4Si6/+r6/mDwMcDn9UiS10qYPfu1aNgl+86Ll7T9x6RnduYVzAZLq7qIrz12zg8t8b41MWJO/bBbPeAWjEn/DbBhyaatTyR5vT+P9YEDQc2fkbX+k3iMpSMhnTqwY6v1H999bTBG82ZuWnLSHcBm7LsZLCKrMTJTTmnvcyIiUcOsAnjHT8jFqOjRIsgAJls1vfJWVSnYBDSWGANsHctwKLZpJVJBCZQHh0WY7nw7B0vv7wi7P7xG2Qk7596PZiz9E8alAR/6PJ4aHkfSCSHJ60lJ8nh6fnHNOeeW0EFeizmJ6di5f46IjBKR8Rj7+2SsTrgVq9U/gYkW7HKfY/3rXy/bIiL/jLZfBILB4K4Duftuef79wljqQE67eQA28PrA7DWbtj0zc/6dqro//LUDwaDfHwgW5RUW/ab+Lf83VVVXOsbxB5jNGCUiF4hIpx+bFm2iraSK8PrPLk86pW2LLzLq1+np9XhScWy7okAgP8nr3QUM8o6fsKFKF3kMICJDMWr7siiPDwZQ1YT8XQJlgn/COAF6Pr1w9blpSb5vr+7RboqbCDIS2KSqi+CIiPIA1rIU0UiWeP1rgccxAxcRQdW8YROnnzYne0cqxVHjYEzOsTFW41yCMb+jjvtzjuOZ2L7wyVnd2vv+esV507s0b9TbY495AQr9gfy9B/PyL3jspT8t3LAlgGVxZoQrEzlWcDeMiLcOG0w+FJtWsiww8eH6uw/k3VIUCFyT5PWwdPO27DfmLXvi6RkLtkW6Dt331wpzBJpg9dqVqrq9tO/weEfCYFYRROQUr0ca5z774EGvx/NzoHP27pzUibO+WX/fqKGjXBR6wsEpmPRT1UkRHmuJESfe0ijTShJIIBL8E8adB/wLaFIUCOL1iHhEtj2/eN2zN0756mtV/bS8hjLsPSZhvZtRURgI5P5z3qr77vl00edY3+MerK8ygEW9tVR1Tjzv59Z7GiZqoMBG//O/U+BnQObO/bn+v0+bvfX1r5ff/d2OPQ9hAx7mYK0tizA5zvYYH2AnMA/Trx2KtcZ8F/ZebTAD+B02CPs3WOT9cSmiDmlYdN4ZE1hYBayJ5Qwcz0gYzCqAMwyDsfmYeWH3d8ZYsaNPVEUbR2O/Chv8vDfs/hSsf3NGWTaxBBLwTxh3ETaSq6RaDf5gsLAoqD+p8+ir31BsKBe6AQkR4QxVLawto07otuZno/+vTd1ap8RcSzB4YG72zvHDXpj+XohYJCINMXH1GUD/WIIKUdZzJTag/i/hxsv1bj4O/B/QDxgH3IYpaY3B2LrLsWtqq4h0dd/B9JLRoGPppmL9o48AD2H11F7YPlUq2ce1gXXBiH1bMNWhE4oo9KPKP1cHOMbcUOCTCF7YWuyCHsSJV78EjM13cdfWe+4/vfsf/BPGNcAEDl72ingCqhsSxjKBssA/YVwS8F8iGEsAn8eTHNTAf+vXSL5qd17h5yFD6YxNnbBbuHGshTHU94Xd1qV4vZNUtWt4v2RJeESSbv9oXirwExHZg9Umt2IpVA9QX0S8GucgeRFpj0WXTwHniMhsVV0HNtpLRJZh+8UczLj9CpiJRbNfYSnhOi6CbIW100SaI1sP+AEztgeBVo652xlL5y4tba1qI8O2unRyO7eeE4oolDCYlQjnuZ4JLIvk4TpW3SJMo/KENJj+CePufnXM6b8NqHowprAGVa/KvnPs9p25Bf2ren0JHHcYQSlTOjwi/HfUgE6jX5+5T0T6YUbRhxmHkEHcg/VI7gMORDJo/gnjngDuj/Y+waAWifD6sm17XnF1w0aYNmxnzIC0w2qSp4pIlkafVgQc0rodCHygqrtEZDdwroikh+qxmKG8EpjvPk8rbNDDvaqa72QCf4b1Xj4exVgC1AVWqKqKyCYsOl2MMfovFJH1GueUIFdOWQmsdFKgnTGiUI67/zuNonEbmD1JsP1vHGbElwFPeweO2RzPex9rJFKylQgR6Y+dBB/FaJo+DasfXHyisUT9E8ZdA/ybCMLszlvOAk72Pfxi4qRMIC74J4z7JfB7jFEaEUFV/9Jte/5zyrNT/4UzkOUtebha6VtB1dRwWUtVzdtXWLTzjBc+vmXptj0flkxDOu3YK7DI1Yep+yRTHIFuA3aEDLUrUVyECbSvDXudEON3L/DFkNZNUtvVqzX19lO6NKlXIzmtQY2UBT+fNj9n4pJ1M4PKm5gEYChq7IAxhTeU/Fwici3wiqoWiMjZQC9V/aN7rDfQUFXL7cSHEYU6YxNe1mNR56EUc2D2pEbYIO3Q8HnBImUFHvUOHPPb8r5/RSHRVlJJEJHW2Ikwo5ReqRWYNxizVnK8wT9hnAfb2CK2lLgUWVts1FECCcSLfdGilRCCqoGcgqIC7LraezT8AN/DL34InLZu9/65RYFgUFUpCgR3icjvlm7b033ptj0KnOkizENwkd02rKdxg6q+CryJsVprAgOA8a7l5FTgcuAHLaF169b+PuBrX6/WHa+OOf3bx8899bTuTep1zqhTs2WNJN/oJ8/vf+m860f8tlay77dYDfFTVZ2LGaP+IjLUpU2BQ2WiojAHfSNQNyz1vASo5/awckFVg2oll2nAG5jjMlRELhWRHs0b1q/h1peJpcRDkn0pWG3114HZk24q7/tXFBIp2UqAiNTGSD7TtRSZN1XNEZH1WFrlRNJQPRmrE8VCLeAa4NNjvZgEjn+ISJ2z2zXb9u5lw1KSvNElUb0i/PebtR9i0c0QEQlpq27BjFKZMjlJj7z0PfA0sMLnkQX+oE5U1fxhAC/INKzscraIfFxCUWgt5jSnwiHjt97dQk5jY8xpbGtLl8aYod0KbHWGtwlQZ+qVZ95Wv0ZyC6/HE76Pi0ckrWujus1fHzv4wvNf/ezQxCNH/HkbIwhdLCIzHWegLhaxhrALk9BrCqxzpaJZ7rv7XuMczB0N7nMvBhY7olDna0ee+ZA/EOjo83qjCbqkAb8LzJ70rHfgmHgHN1Q4EgbzGMN5msOBJbHo2SUwE/M2k0rzno8jpGPU+lgQbCxRAglEhZjIeU/gpOnrf6i5Zve+zzIbpp8ucsRMx9CovNdfXrb+s5c5lBpsCDTH2j2GOUm6cANaWktTR8yo1PIHdUW4E+yMyycYse88Efko7Bpeh2WOvCKSXPJ9XFkiCbtO/oilI+tjhquVW2t7oPDWvp03t61bq3k04YAkryfpzLbNWrerV2u8iOwOpWHdWmY5pv4wp0R0kMMN5h7MYDZza0ZVvxeRrRjLNq7hCfEgRBQq/OKtGzweiaWtDUbs6lOR719WJFKyxx79gIOqWirLLAzLsIvm5GOyoqrBemKIRzsUYjT4BBI4AiLSUkRGYkIEbTGj9VLXRnVHisj72AQSP5jhKgwE/Ct37st67ps1t4Zew6UGt6vqYlWdCkzEiC0FmFD61SJykYj0c++XVGINgtUC/Rhp7QgBDle/nIEZofNdPRLHit+G7buNSz5PbPD1YKz3Mc+tdSd27RS6z/cWMHFcj3a9NUbdFsAjFPx6wEk+jLHbsMQaN7vXSsWUf8IfC2CTVtqXeMm5QBdH5KlQeL2euu67jYUgRtiqMiQizGMIEWkHtAaOaNIvBVuwRuMBGPvtuIfv4Rc3+ieMW4Q1Yke7MIIYfT6BBIDDVHl6YOdNPnaefAMsDksPXuafMO4k4AagtT+o2Ve8/WXhe6uzc4FTbjKlnSPgjFuIeLPIZYQaYxHoyUAjx04NRaAejLjTEYtG90Z5XQW+dCS+kSIy1RnMte65jTCjFPqcyRiZ52t18n3OWPfA2jpWAq+FolL/hHE7KYUdLCKeizNbf3vzB18nAVeKyH/Dma4uFf2Zi1p7i0g+JuYQxAQM+odnuVQ1V0QWAKeLyPulcDHKimUYQSmWE5CMfX9VhoTBPEZwrLhBmNhzmWokLjUzDxguIr6jrRlUI9ysql8BaSW9SXcx/tv38IvrqmhtCRxjOOm6tliUsMn38Iu7ox3rDEgXLOrbi0VZ7bHI7p1I7RG+h1/8FrgTbGN77w8yGFO56SMi2aq6vrQ1uujqB3db6FKeIQPaG2vzyMbKLF+Wdn2q6lci0hebd/nBSxcN2r4nr3DQ6C4tr/dPGHcQmFsYCPzbfbbvVXWVuzY6Y4o9WzDhgP1i2rdNgdZPj+xf8+ru7fKTvJ6oaUx/MOidvv6HXZizcB0wRkRejVDmKcCc+lOxEWMzsOkqAffZvw87NsutrROm6lMhWPHd5v91atX8Lp83qg+gwDfegWM2VNR7lgeJlOwxgLvIzsIURXaUdnwULMV+n+4VtrAqRtIjL2Xd8sHXD+X5A8ux9FIOsC8QDO6bvm7La7/7YundVbzEBI4R/BPGjcaipOXA58AW/4Rxk/0TxrULP05E0lyv5BVYFPYFdq50wVosPozRS1gS32L1uQKKx2yVCarqV9UtqroAG/a8CpOdC7U9/ERMiLyPiDQryY51r7EAWHVtz/Y/u6Rr63U39O4wsmmtGt2xebe3+Tye5dOvHn4FMMfVFi/GotBpWLq4iYicgfUmDgACTy5Y/R8s0o6KQFB3jntnVg4WuX2HjRc7R8LaYUQkFfCo6i5V/RAziBdg332I+BP+WRT4EuslLa3mGBdEpH2Pcb+48dWPv1zuDwQiBReKCbpUOUs20Yd5DCAipwMpqvrJUbxGA+ABIEtVn6ywxVUhRGQg9r185p8wriO2KexfsWPv3J5PTTkf+6wV5rUmUD3gnzDuFuAvHNlSFMDaC05NeuSlXVj6sQ3WarEcI7r0xgztovJkWkRkFMa+Vsx4TinZI1mG12qPRVc+YBTWJrUZMyrN3a0eNiw6lMLdrqpB/4RxdfzB4CavSJ1Itbqgat6LS9f//Yb3v1qMGa1Q32JD9zqb3C0XIyv1ee+yYenndmj+x5JkJ1VVf1CLrpk8+8U3VmycgH3HHbFaZSY2deQtR4hqSgm5PpcdGw6cD0xV1SPGDIpNPfHpUQxJcIHFCOBc4Aevx7Pg4IzX2vu83geL/P6aXo+nyOPxJGFtLT/1DhwTcWBDZSJhMCsYItIBY3K9EwfbrrTX+gV2cdyicUppVVeISCssRR1RWN0xH88F3jjRBBt+zPBPGNcY6+uLGI2oKvn+wM7zX/3s4S83bZ+F9SGnY+dKAdZov7e87++MXC8sIjyA9UAuLOdrnYsZwwFAS+DPjpQTfkwyhxvQdGDb/2fvvMOcqrP//zo3md7oQxlAei9WLDTFgr2Criuyq1vcXr7+tjpume27rtv7urK4FrAX7KKACiiIgIj0MvQ2DExPcn5/nE+YEJJMZhhgBvN+njwMyc3Nzc29n9Pe533m33bpmFO7tPuql2C0XVl17daOv5nx/9x/N2HnbZvWa9LmY6QgH/CGqpYFiqeMw5yRoSHVukAolFMXDM0/UBv4avffPTYcq/8+oKofusjyUxgRcRPGjwhgNnZ21PcQ4Pvu/b9Q1ZUxvuck4FXHdG0UXLvMpzAW8EdYmvtVVQ0F33zc97V7//XD4k9PfrtDm/yVvvOuazCVfryQMpjNCMdyuwonZdUM+xsP3Ar8VlVbLXvUecDXYzdEItHrMUBIVd88bgeXwjFFoHjKd4Fi4mi9ghlNoHzdvoPjBv7lqQLMGM2PbtpvCpyRuBmrw2VibUuvNHaRd+nHm7DRWB2wyPdHDTl3jiHbZfedk58ryEwfnGjbkGrttPfXnvrZZ95eEbUPwUWVWP/ismjCTaB4ShHQod+fnvjehrKKp1X1ARfBXYeVdZ7HtGUzsXR3Wyy1fCYWMb9ClN6riFyCRf27sJruHD18WERvd0yPJRu1u99jlDuutZgDsh8TdAm5bTKBG1V1WjL7PJ5I1TCbCRF1y4XNYSwdNmMXa2vXWB0HrEpkLB3eAXq7dHQKJwfOIIGxBHAZyrxOOZkv+z2pxbIMzcKGdIvwSiz92x6ra14QbvVoBPpgRuMUbIGvTCYToqo1qrqhIDO9wchEoPbTI/setk8XVV6BRXpPq+rSWOxUf8n0Un/J9CUbyireBM4REc9Fpo8BCzAxhcuw8/AMFr0PwKLYZ6gfDH2ViAxwDN097ru+i40qu0FEekV8t3VY1J4Uz8IFFFMxyb/nMCdmH/BalMEtwNLILQ4pg9l8GA3sjk5dHCW2YBft8FhkgtYAsZFCWdhNlxCuAfxdYHQSPVkptA4cSGYjEZHcdH9W1fc+mXm0pYwY+BBj5y7B6oIbsLmrjUE/bL1cj0WYjR2WvLihskpdKJTR43ePnekMVpaIDAGuwYza00mmpt+hXvQ9zPqdhUWXg7DIrgYb7pCOObM71aTz/oeRDU/BRvD1xurOhar6jnvPKBE5X+ql9d4ERiQiVIlhCPAVjHX7d4wpvR94PYYDUOBea3FItZU0EoHiKZ2xFE8PzON8MO0nD2RjF+kTzflZatMGVmM3a1+akcZ9POA8yjOApxpBtFiJMSL7AauO0aGlcPzwMLZINySLCOZYjcGa/psNqlohIlsx4o8Py9qMEJGByTi4LsrLd+9/DkvHNqr9acYHGx65blCPG/1xHN9gSAOb9lc8v+1gVTes77Ibtr48D2xuRM/jRsxJOQN4GizKFpFXsXrlEOz3eAnrZR0FnCci4fmdG4ANYrXWEZhMX28R2Y2RsR7FMl43iMgbagpAy396w4WfD04rGe9eC2IM39/4P3X3OizzdhpWn34BU0HaDbwZ53vl00IjzJTBTBKuh+xX2KgcsFpAjar+aMHtl7415Yl5kz7aU34s+iU3YU3VZ9OKDKaLiCdgKeqkvUVVVRF5E9Pi3HAMoo0Uji9ewq7fbBpotFeQNzZsH3iRyEBgTTP3H3+AZYHmYQv2i5gKz/YkIre+WFR20D3yMaPbIFz9/jwg9532l708uGObi9J93mHN+SHVugO1dZU3PjpnFsYIPZf6GZqDgP4iUokZww2Ypmw8B3QXFv2ejjOYcOi+egMToB+IEew+xNaXjlia+uWwAVPTe31bbB5mGyxiPRUz4h+5YxkvIusr//WDqz2Rr6lqekRm6OaQ6uQ/Trli5lemP/sR5mgsBS51x/9WgtNW4I6rxSGVkk0ePwK+gBnKMOMvQ0QyRnZud/YHX7z6WI2e2YylZUdE9k+1ApwBHGhKilptGvwmt48UWjH8JdNDWJTSUP2a2mAo+L9l62vc9reIyDkiUtAcx6EmMh6OZnZjxKJ3iTFZJAb6YQZ/GUaWqSOJVLNjzN/gtt0y6t+zHnti5aYHXS2/AouiqjyRB6+f+cbUpTvLTsUIOS+o6p+A/2Bp5LDT2B5znG8VkQki0je6FusczBVAUTQXQA1vYi07Acww78KcgB5YtBmNPZic31osZbsBIwKNBzb9ZeqVl3nC1/w+LyOqjOL3RDI/M/70Gx+444YFmLG8HBNnSGQsoQWnZFvTAnzCECiekg/ciVHTj4BnXuTtjkLf3NiFXTyZWB2mxUNEumJeeZN7tDCB5b5iQ3RTaMXwl0wvxephH1JvtKIRSvNkw/Sl657BCDZnYobzkyJyuYic0gwO4wdYSnI+tuivx4zZWfHe4Nof2mIGbjMWbQVIkDIUkRzXgjISS0EGgS4hpe6WJ+b9QESKMGdw7N6qmsK0nzzwmzkbdxS443oXUyYarqrlqroQM1QLsXOXgxmvMuw83SwiV4jIMJc6Bov+9hPH4VTVBZjRzMJsQND9O1hEBkVtvgcz2J1VtU5VP1LVp7Hoteaa0wff7Pf54hKo/J7nXXfGkKkYcWmD++yGkErJtnJcgRN1TgDFvMm/NOcHu1TKJqDo4t5dLg8UT1kI7PSXTG8xvUmRcB7v+VifWMJRZong6rfvYmm0pxvaPoWWDX/J9LpA8ZQLMMZmRw5nzlYDB32ed2kgFFojIk9gbRQXYEanD1bX2yYiy4GV2rSZlqsxQxzE6uNnYk7ddWLSeZtjvKcvlhpd5u7Ftti9HjPCdAbnTMw4v4QxSHtjaVJR1XCqcaUzcOMxY/U0ZuQuwIQW+jtnca4j7qwF1jpewEDM8O92xx/EIsSRIlKDKQAdwNKyL8Y6TlVdLCJnYo74boyME8T0Y8tVNSyHtxtLxxZGvX9/cFrJe6qacEamiPiDodCVwL2qujjRtm77TNt909eOY4lUhJkcOmCTCeJCVTPX7j3QX0Q6RytvHC0evG5Mh81fv/72J288/x5VfQFYHiie8n6geMr5zfk5zYSxwDpVLW1wy4bxIeAXkX7NsK8UTjD8JdO3YwbkbizlXoWp2PwCGOwvmb4GDqUOP1DVP2LasC9TL2ZwA/AFl5Ls0pjPV9NQXYPVBRdjgxGysXF646LvWxfRDsVSsKvd020xSbwDUdvmi01SGYipCS1yfw/GmKtFwFtuWxGRoRgDdgOOAevqh7OxiG4fFtBcKRFiB267MKN1FWY4R2MKQE+477IXW7MuFJFLRaSXRE1dcdiHRa6FWHTbCYtgJ0j9RJI97jgKIpixEV+7YTK73+eFkjGWDi22pQRSwgVJIVA85WpgOgmYfrXBYM0zq0r/fNNjc+diKQUf5jGGH+XhvxvjPQWKp0xQ1acltkJIJXCjv2T6s8l/m2MHRxAYhqkcNYsykUuJXYz15qUIQB9TuJW5N5a9OJV6tusqYBFGEmrw+nCG4HLgQcxwnqKqz7loqwNWP1S3bQ+MEf+qa6tARD4FpKnqPyOOa6g7piXAcsdK7YelemdhU0jmq+oGF1WOw4KV12MR4qReMm435lQMxkZ+xWxlcd9pEFZr3YHVMC/ADPZKLLotxIhEG6mX2Ps0cD8WwZ+FsWZvc6/vBJ48+M/iwe9t3PbLzgV52dnpaYsLC3Lv9U0tXus+1zvwj+INWelp3eOdbxeVP+ObWnx1vG2ivkt/oEhVX0tm++ONVEo2OTxPA0LHgPfl5xf6sJmPb2AXZwFmPAswD3MI5qlBDEOKGdNDjcuB4ike8L84xhLMO54eKJ7SyV8y/YQOmnYLwSjMu242GT9V3Skim7H00tvNtd8UWhecEQunJbOwa20sltI8A0vXvo2lTuNOQVHVfSJSRn1NdYiI9MSM7lWY8Qtrlg7CDNsHcGjcVhssKgwbqnFYKvOpsPETa+4fBTzr9rET2OiiytMww7Q8XquIqgZE5AVMBH0D1us4UUTmq+oRrVaqug8Tbl/ovtdp7nMrga6qer+LDouwqPoMbD0rBNqq6ioRCWBs3n8Bd3TIzc5798dfeDPD7x9wdp/umSLihVTPBG4PTiv5T69v3vM94Pp7X3xr7TcnntclM80f05aISBXw65g/Rmy02PolpCLMpBEonjIF+BtHCkgTDGn106s2z5j86Jx/YfWLNliqaSEmN1URub3L00ca04KI/yvOeP7v2tGDbhjc81eeSEyykcMB4FP+kumNnbnZbHCpq6swL7/ZJfzc+ZqMGeO4i2EKHy+46K4IM1pnYvfPPswgvQWsj9V+4QzaMJe56YHNaJ2JpSOvxaLC/cB3sPmUL7n3dQRuxKK2vZhxfRcbGhCOSrtjRvx5LAq+CKsjnk2CqDLO98vC7qsPMBGTSzADurChvmYRmYBle64C7sHaVba4iM/DjOY5mGOfhkWe4ZaT9xb+8I7HhhUV9kzz+44whMFQqPqxdz9YcvNfZi72eVL5/k++PKFPYbvBaUeSfyqAP/imFn8vme8bcdybVHV1gxufAKRqmEnCXzJ9OjacdjdQXhcMVYVUDwRCoQOzN2z/4+RH5/wIY7E+DTyEeXATgNtF5GIRKQon/FW1WlV3qOpqVX1XVV9V1cdV9X5gBlZP2NKzTW5v1cRT1TEDPvCYfOnkcRpQeyyMJRxSAFqEecAppAAcqnVuVtUHgG9jDu0OzGB9F7hLREbLkSo0G4E8EWnvSDgHgMGqegAztBdgZJ9crNYZRhtMHed0LDp7XFVXRBjLLljK+CWMxToeSxtfSn2tsjE9yVVY/+JwjCj1JNZaMjG6nSQGVmP12rexUtJZwE0iMhLLggWwNPEjWCS8H6ththkzoOeXh3fv3D2WsQTweV7mNacNPr0wP3dTMKTzT7/7L9+e/eH6e4Oh0Dr3m+iO/QfX19QFbmmMsXRosS0lkIowG41A8RQfcP5TH22+uCAjbcULa7bOuGf+imsx8eIA5gWuwm60fpgnl+deO4ilgT5Kpo4ZKJ5yO/B74rSzOFQD3/WXTP9d079V0yE2HugiTIC5KczFZD9HMO9/qTaTzmgKJydcW9M5mIPVEbvv3sIIMaUuyjoNyFXVOSLSrmd2xg2LJ56WkeXzXbu3pq7DazvLDvxp1dYnFuwp/43bpw+bRxmeuPNC1Gd2xAzjq2rqN+e7z1+KMcabbAQcM/YKTHRhExatdgde1DiiCy4r8wnM+BSp6h/cMQ7C0rYdMMf8MLUdEcl890df+N3QosLP+n1e3ICqNhCoeujtpffc/u8n/42d69nARf0K27/z4S+/tsb/qbsnYmnnDY38rp8CHm6pLNmUwWwiRGQcsENVV0r9CKHHMe/tIsyQzcbqG33d6+lYET8X6+laoQkEyQPFUzqr6npJMKg1GNLah5avP+dTT72ZLAut2eDqItcDb6nqxuPweYXYuU0RgFJoEO6+GYzVOodg2Zg1mHO7FHPAHqqcNPrUQEhfEfB8njFla4KhkN+TgE/kjuyZ8553++iNGaCnI9oucO0fl2Pchc2YvN/NwD8xDdmjXmRFpANGBHpFVbc6gt0oLMUbUxVHRG503/OrwFe0fkxYOnAH5khUYE78qrCRCk4ruQf4ZqLjCQRDVTWBwFcLPv+TSqyncwQ2im29+4yBmKFOeiaw+71ucpm2FolUSrbpqMUMIKq6FjOEQ1wa5VnMYF4N5LhC/UwsPeJhKSDBRMYni8jQWCmWtJ88sGd92cF5gVAopnFQ1er9NbVzP/30W4NF5CLniR5PnId57MfcWAKo6g5sbt5px+PzUmjdcKWPxar6O6yV5UHMaH4O+C0w8KLOba4EXvJ7khM2lgAZPs/ziaQHVf/6/wYWfRlrDdlAlMqPmBLRZVgEW4bd85cDf1XVRc1hLN132Y0Z+gtFpKPaoPUXgbEuzRoLO9y/5VhaN4w6zFg+gEXd7bB07QUurfwRZkjjwudJ1v7K6ikDu3QIYr2yb4SNpcMGTG0oYTteFFp0OhZSBvNocMhgOswDThWRHFUNqU0iXwlcLSJd3HNrMMO5BOvnCmDMv07AJ0RkvGujCLNOrzl/2ku/8EReDYZC1SE9pPOIqiIiO9tlZdyBCVzvxMbzjItRs2l2uKi6E8efuboAa+pu2+CWKaTgoKrbVPU54C7glxgxqOslndvdWxcKxe2b9olk3D2055hNV43KvufU3hf8bPgpp6+78qw0AHefXY4Z0yysrzILiwLfPwbfYSsWxU4UkbbOgXwCE0e/wLWjRGIndo++x+FqRrkY56DWcSlex3gXO4Exg779+5pgKJSwg0JE6JSfe+7cuz77uxtHDV0YHeW6aHU7xspNFi3eYKZSsk2EiAwD8jRCF1FEzgDaRKYhRKQbRiJ4V1U/jHhesDE6p2MEoQ8w1Y1BGNuvLfC8qi6dccPYNmN7Fq5sl5nRwfMO072scY8L/CXTF7lUywgsDbUaeE8jBr4243fPxSYezNKoifPHA46ef4qqtoj+0xRaJ0Skc+lVo1a0y0hL6Hy5NbK6zvmr6Z4ntcHQjH7PvfPKrpq6VdSr4CzHsi6PHov7LuK4wz2eT6vqAWcox2KkpJdU9aDbrgO29iwAvoWlZUOOyTvcORCx9n/qr2685DdfnHDW+Mz0tIRBVUi1xhP5vW9q8bfjHGdvVY2pNhRj+zMAVLXBUYAnCqkIs+mIjjDBIseOYlqRALhax9PAMBE5z1G6wwy/9diA18VYjaUflu7JwHQuTxWRMad1af+/Nhnp7aKMJW67fODFQPGUdOcxvoMxbQEmicgZcqRCR5PhDP35GPnmuBtLhxVApotyU0ihSVDV7XlpvqQmoohIZrrnZaZ7XhaQ6YncNP+iU7+d4clA7F59DtcrfCyNJYBruViCTVvJVtWAWqP/WuAaV+sHa33JwYTva6hn07fF2m+OgNj82gu/9ciLGx+cv/QvwVCoNlFQ5Vkp6Y7gtJJYEelGoEsSjN4wWnyEmTKYTccRBtMV1d/EapO+iOf3Y5TwPOCySBKPM5wbsKnn6RgLbx/WRjFzXM9C6ZqXfYnf5yWqBWRg5JvwPqtc5PsEln65UUSGx0jZNAUj3L/NnnJKFmo9aPMw3cvG1EhSSOEw+ESWNrSNxJB/83uS3jEjrc+SiadXquoyrK6+/3gxuFX1A4yNf1nYILk08BzgErFZnyHqdWLfx9i1YJFoWeT+RMRzRMZJQFfg0c/d99SvK2pq98f6/lFIw9jI0cdYi/WPnpLk10oZzJMYsSJMXC5/L/WGJfx8LVak34V5gYfSQK5eeTV2cd2F1SmGAVfcMqz3GVCv/hMHucDnAsVTDjOIqnrA1SeexQSUbxSRgdLEqQ+Olj4cmN1cZIamQlW3Y+fr9BN5HCm0bngivwk2MSL0e5LZMyfzcy71ORBz4o4b1PRZt2A1Tb97bhOW0RohIufi6pjpPu/tawZ0vzhQPOWrT944/ubp14zuEN6PM7iTsJa4g1gf6SpgXEaavyyJQ/FjJMdYWItJ7yWDFq3yAymDeTSIaTAd3gKGSv24HeBQNLkAix6vFJGeLn17NaYW8oaqBtWasZ8E3ly2c9+pwVDiwbtu36NDqqWB4inDYry2T02t5GWsxWWSiPSWJFzHMNwNeQHWt3Uw2fcdY6QIQCkcLV4MhPTFeEz0hlAVDA4EbsUILh1EpJOI5B3HzMd8LCq7OKLcU4Zll9oAQz45rNdZB7/ziSceuHb09SHVX13Sp+ttNw7p+UKgeMq8f191bn/gK9SLxK/FnPqrgdrXVqxbGggmPjequsI3tThmihfrG+0kDQykCGfdWmr/ZRgpLdmmI67BVNWDIvI+RgB4Psbrq0VkP3A71l7ynzj9mOVvbNzxTppPbmroYETEj2qnmkDw7Ut6dZn62obtK7GbeG84GlQTb37WGekzsXFA72jEWKOqyWMEEzv/P6yuWgk8MLFz2/de2L5vp2uhaRFQ1SoRWYyd5xQBKIVGI2vGXGXymBvm7dr/71Ht865TSFdF0zwRz5zEhM7qtqradCy6rMJSmTVYIJLpHNLqGI+qOM9XawOSd9FQVRWROcCFwAUi8qpzzGtF5PlrB3a/7s+XnvU/IC3D7/Owwc5gAvKjruhf9E7XvKwfbj1Q9SwmQOBh9/8sYP3Pnn7Df+GQPpfF+/xAMFTz0Pylj3zqU3GPLyA2nrAXxj2IhxafjoWUwTwaJIowwQSc+4tIr6j+pHC0NgwjCwgwSER2uRpoeJsM4Nr3d+zr8P72fWtO69Kud0PkHRGRdJ/n+9vlo8b1//NTu3DN2iKyEzOe24GdaqO3SsU0Nc9xfVwLKyeN3o3Ryy/F0rwAhFS/+/B5g0LldcELkzs1xxUrgIEi0ltVW+SM0BRaNrJmzA1eLPKDTM/7cFKPDprp87w5O/e/+97E07+DZVViZmJCqhVzd+2fBfwGSyd2dI8Q1i+8F0sxHsQZ0YhHO6wFJfK5DDER9HhG9YjnHNEvJCKvAhMx0YQ5YMY0UDxlfDAU8scqw4iIvyA9LeOPE88aev3MNwZhogt7MZnB7sAZb6/ZvDQU0gvw8SJmL8Ja2rUh1dBz73/05Kf/+Xjpp/8pQzW+NOZarETV6g1mqq2kiXBG71Oq+q8E24S1JWeqzeJDRPKwWsFu6mseYUr4i5gy0DDqWbMPDevUZtSC2y+7CyhK83nJODmb/SXTe7jPy8Tql+EhsO0xUtEhA4oJWJ/+yvnDLjqnff6NCdInZUD3rBlzW0pKFjh0ni/AFIBO6NSWFFonXDT4S6xcsh/IrJw0eium1nXEwAVVDVQGQ2WXvrFswjt7DiyN2lceRrTp6P5tj2VqdmH32y5gT6SDHHEM6ZjxjDam0Y/w6z7qDWgdZpi2Ycz76prvf3KhF3/aEQC7K6v3dPnto19z3/ttLNL0YypCZQDBaSUFwFTgJoxk+CbwB/+n7vYB52JOxQuuVzT63PqAW7B2m5iCCK2hpQRSBvOoICKfwdKpccdZich4zBOcH9GT+V60NyYiozBDuhdjtB3EjNwWoH2vNrm9fjx+xC03Djnl/IZKj7XBUEXOzx+cTOy0Tx0WPRZgXm4noLptun/P+ivPejzd8xKJHhwE/i9rxtx/JDyAEwAx7c4KVV14oo8lhdYHZ6zuwu6/RVhN7z+Vk0ZPrA2GngiBl2lMdQUqKgPBnbfO/+iHz23dMz2JfXuYQxw2oB3d//dTb0B3AmWNTck6YxRpSPOxDNH29lkZW7Z984bZDXEVagLBqtxfPHQ1pgw0EmtZWZYssU9ETnfvC2Ka0gdibDMO2KeqMVnJ0sKnlISRSskeHcJp2UQsuwUYycaP0atfjfTCxLy/EUB/rPG5PRb5DcVu3CFA/vqyg9unPPnmtiv6F9XmpqclTs2aLNVyXJrH/dueqPSP+zcI5E4obDNSlYaICrkYm67FGUzsPN9wQ/eOG6efM3AsFjXvAp7KmjH3iBs4hRSi0Aa7b8KMziogP3vmvPfbpPnu/VK/bqdO6tGhon9e9tqlZQdfP/flJR1Cph3dIJwR3OseH8EhQ9ceM6BdMPZ5rojsJiISVdWErFHnrFdQL2W3RUQ2AleX19TtFJtHmTDCrAuFyrCI9RQi5nomC1Vd5MRMBmItLU9GR89YWvZMTNs2FlpFSjZlMI8OyRjMOixtcjnw0wgVjlzMUPbFKNwzVbXSMT4nYenThT2yM6799qDuw64pat9HkPzgvgOV2qmtl6CnsiLN5/1K4wgyR8J5nm2BLn1zs3wiDQ7JZktlTfd+Jupc6b53ZdTfh/49nq0nqlo578KRfUe0yf07ds7Tsd/nH1WTx/wCKMmaMTeVTkkhHjph2ZwcoAewBzNoQ8vqgnt+umLTqp+u2PRbjPV5DTaTMqHeaiI4Q7fTPYBDoujhOmgfrM/Yz+Gp3F3awFQgt448B3pVVV1gXabfNzRekFkbDNb9Z8na9Zjz/PRRsFTnYueuDzaf9NWo17diDkF+HCegxbeUQMpgHi0SEn9cLeNizHMtB7qKyDYsfdEb05qdEVYGcTdHeJB0v7EdC34587xBk3L8vpAXFjsoP5ihbfPA70e8I26CamzywMMxjiVMNIh8tMVqD+n/3bCj7XcHd2/oeqjumJn2KFZrzcI812z3d5uIv7MxAkMNDRvWSm2GySNVk8d87rS2uf/nvmdYGCKsMPIt7Fq/+2g/J4WTFh0xo5SO3Z8vY2nZTPfcQer7q6tVdWVzH0BEo3/kJJRs6lO5QzAlsTqc8XTHvDv6HlLV8r3fuvHsNJ/XP56xDIVCoUBIy+dt2vlZ9xk3isgaTMWrUVkZRzx6GTOaI0Rkt0bo6brX12MG9b3I97aWlhJI1TCPCiJyBVaP3BLjta7YAOklqrpMRE4BPgusw9ISy1S12hFserpHV4yQM3hQfva/X7tg+No8vy/bi77ifR5e5w4hyc4ihFb6PS+IGYeZs9dv//LF/3slnSONo9/tey8WgeVhRi4L85rXr73izHs7ZaRf6fPiRq/VQJ+sGXOPKOzH+P5hVmC0YY3+OwuLwBs0rFjUekS9uGrymAxs4ciPfi3q2LtlzZi7t6FjT+HjBxG5DiPh9cHGZr2DcQoeBSZj1+FfgCuxwdEnjPjm+rujSUUHiYhEN3/9+vTOuVmrqXcej4CqBmuCod65P39wk9tvNlYKGogZ7fe1kfKXbh83YmvOI46RH36tMzBaVR+Nek8hcK6qPtGYzzoRSEWYTUSgeEqfZ246/6LebfNODxRPeQmY7y+ZHp68PgzzUl8FKh0hpTuWx9+ApWAHiEhP7MIqda/Nxrzasr+f2e+qDM9LO8JYAgRDhLbs9AKeV/takF/UKAfvmb9i88Itu9OwdO5+6msmy92/4RpFL0zKagMm+L4d86DHXv7G8sffueS04UA3om60QEhrK4PBrxU+8XaDxhIO1W3Chm5Pom1dZB3LmHbkcMOa7Wj3lRGPqsdHDz7ros5tPV9ibkMIu5H/mszxp/Dxgbv+2mDXaV9gtV9k+IWd2/T5Sr9ug7+/dH33JWUVLwPjgXdOtHCHS2mWY7M9w85pW+oN6MAFW3ZNvrxfkc8ffwY0IlKZ6ff1xRxmXKp3oYi8hw2BuFhEyjHDuTnujg4/tkoReRL4JHCdiNwfkYLdgWWe2qpqpNBBq6hfQspgNhqB4intsJTnmIt6dwkT0P4fsHXnnZMnFd4zMxzRvYFddN2wnsxVWBT5CcyDW4qlJraGoya3s8HAG36RH2f6vITkntraOtas3+HduWTd29QbyDKX/vAwlu0pmD5tEOv7fB2rg4SNe7j1Zd3KA1Wv+kSexlKYXwqp5gh4IvLmI5t2PvDZd1bvQMRrLJOvITiCwAEi5gzGg+tPPcyw5vl93VDSYnfLHUI2FsGnkEI0OmAMzqCIeK+MHzZscEHOXdk+L80Trn59wojMvTWB0b/9qPTeP67a0uKiIHc/7nGPlQA13//kBT4vof50GN1i7K8OWCoiy3ERt2PxLwXWNHT/q+o+EXkMa0O5XkQeUNU6J7IQlsqLbB9pFfVLSEnjNQqB4ikZWHF7HJDp87wMp9afo6p989LT3rpuYI/+WHpkPOaQbMJqD+diqdDpWFT3pvPaPBFpJyI9MLWOIuDmikCwXUPH4/ck8MV+Xd9T1YVqos/7saGt47C+p7OxVOTzqvqI226nu3A91/s0AZuUPl9Vg1kz5pZnzZh7F9B+zKvv3zxh9tLBWTPmjvvsO6v/5Y7/rDiHc1ygqjVqUn9bVHWNqi49r2PB2z5PGtLbrcLOewopRKMjls7ktfOH3ziqff4P26T7c9J9Xrrf83LSPc9XmJnW65cjev2iavKYVjG83Od5pZjqUFzUBkP++5esbS8m0XmEcVWb4bvapVDnY33hnxAb5JDQmVdTLpuJZbQmRrwUS1s2FWGepLgRixKPuFhERHwemXeeO/gzj6/c9A8sogvX1sIKNHnuMQgzbGXYb3AQi66GYF5iztaq2nm1wVDfdJ8XdzSOX8T/wf6KZWfamKtemLHdg6VbF8cr3DuG7gXuGB+PxbrLmjE39J6lY2rhkATXa1iaZWcLU9V5noadPwEeOQ7HkkLrQydgc9XkMZ3ObJ/3OV8MY+CyPznAfVi5paXjQeAHiTbwe1LznVcXz8WEUi4QkV1YeagUE1Y4RHCJUAfrgBGfThWRlRgXIyZrV1XXisgTwE0isl1V31HVXWLoEFEfbTUGMxVhNg5fxW6amPBEvFM7txuZm+4PYQawDTb252ysmN4Oi/ie84Tgu5+5bFfdXbecW3fXLVP2fevGiVf0K/JjBmrW199b6yOOJBdAUDW4saJ65ZkvvXcB1sNZihXZn1HVZQmMZS9s+PMmbAB0Ioq6Rh6DqtZg7MHRItImwfuOK7JmzK0Gvp/gu1QAf8yaMfdEze9MoWWjE+bYfioJEmS/qsljBh/7Qzo6+EumbwQewOr8sVDpify/3ZXVi9QGsU/HUq7ZWNbpFhG5QET6SYTyl6ruVtVXsR5UH9ZjPl7iDEBQ1fcwVv1kx9mAI6PMVpOSTUWYjUOXhjbwRPTqAd3f/9+y9Zsxo3lEP2KgeEr+/uraaTnp/v5YtOplp/kDMyeN1VV7yl84/Z/PddtXG8iZvmHHD27tVfhjn4g/kvxTFwoFDwSCNb/4cPNXgPnJtGU4YsPZWBT6gpoQe0M4zGCC3TAishC4yDUotwgpuqwZc//w/LhhQ8d0KpjiM2JQFuac+IA/Ad87oQeYQouEa2nIAPaHVIf7vcS8Aaws0Y/EuqgtBXdgDvinsXs5E3MePeDb/pLph2Q9HY9gk3uEW+KKsMzVeSJyANOaLQV2OIf8LREJqyJd4SLUpXqkPN5sjMl7h4j8EjOYE906Ep7l2eJbSiBlMJOGiHTY960bD+amJ66jqyKzVm/pg12cO4GdIrI/ymg+mZ+RNkAiJpF7ZhTp2y5v4v1Xn1dwyxPzfv+VxWu9p7bsee7uoT1HjGyTe4oIKlC5tzbwwNhX30/fXFnzQZLGsh3mNe7BUrDJ9j0qMbIQqrrSUcHHcmSD8gmBiPQDXlp+6en/1zs361rqlX4eS7WSpJAAnXAkuNVXnEXXrHSNyUyvh5AEOa0lwF8yPQB8MVA85cfYgPl2mEF8zF8yPSHT1xnED4EPHYGwE3ZPnQW0df3kpcBmVX1PbBB3f2CMiNRi8p7r1cGlZjsBXwDuAeq+dvE5/Ub1KWr/m+ffjCst2tKQ6sOMA1ezKMQ8rF5A6OVbLhw6tmfhNxKIGQdDqo9m/PR/X8UujkL3bzrOeM68YWyHqwd0f1wSCCLXBoO1PX73+Pf2VNVchDFp30735PJJ3Tv+8p9n9d+QPXNef+AMzHt8XI+UoYr8HoPdtvNVdVUjz8EFmL7jEVPkXcR6NfCRxp9ScFzgzuUNWIo5lXZNIWk44psA732lX9e7fjq817f9nsTtXcRShx2zZsw9arGN1goXlXfDDGh3jAtRikWgWzE2+ggsy7MMWyMC7n3fvunsYfzhlssvaZOddYaitYKke57MA77lm1qcEl9vLXCeVBfMQJ6CpfTWY57S3kDxlKxAKLRCkO4+T46YkxdSrfBETvOXTF8Vtd9szHB2euu2iXee3qX99V6McTthVAeCNb9f8OGf7pq9pBrrtdqCMXPvdi0j4zEDXAgEVXVOjO+SgUWA+Zh+bVkTzsf5wJZ4htY1UF8DvKiqOxq7/+aCiFyCkRRa9M2WQsuDiFyG9SMX+ITCjVeO+mNBmr9PHPGOCuAnWTPm/uL4HmXLhqtfdscMaCGWyQqzdLth7W0fAB+8V/Klc/t3bv9Cut/nlyMj+UrgCt/U4tnH7+gbh4896UdEfI5WPR5rxTgLY60+o6qPquoiVd0LkPaTB3zj7n/xV5WBwPJAKFSrqrUh1VBIteJATV3ZF2ct+G3aTx4oi/4MVa1U1Q2quvDMrh32JjKWAJ4QqgoE+2MX2Q7MgK+M6H/qjLVIzMPk9npHfafOWAqmAniyKcYyfOgkIB65huTXgQulgYnqxwoi0hdjHr/X0LYppBADHTEFrBFBZdHYV99/aF9doFRVD4bLKK5OXwX8CxsBlkIEXJvXUlWdhZGHFmO1ycHYWlUGDPREpvTr3P7BjDR/WgxjCUY4mhGcVpJwaPeJxMeyhul6jrpjhqg75hGtB96Np+Lh+o4mLty65812v3pkSfGYYb3uHjei6xsbtg/LSvPPunD6y5urA8FumDrGk/H2A3ygqlUNGBjfqj3lm6mfKLLO/Y17XybWaK1ig2MvFRsSXYGxcgcDb2gSAuwNIKHBBFDVTSKyCpggIrOaW9QgEVzkfg5GYmo1dZAUWgZEpAAj8fTBsjh911VUe/2eXXjBvuvPO2XOzrK/ds5M1z65WbN8wl+zZsw9ojSRwuFw5aFwa0q4ha0b0P3rl5x7sZgiUSJkAJcBzxzTA20iPjYG06Uoe2JGsisWua0D3lInfp7gvR5wETaY9UPg5pK5yx778ZylBy+yyHS721cfrAdyoog8HU2uERH/hF6dlz77iQv8/gS8gvKauvLHPty4EEsJZ2Np2fCFVoix1MLe7y4ReR+7yKoxCbjHGmgXSRYNGkyHd93nnwEcz3mUo7HIe9dx/MwUWjFKRw7sDHwemLx2WP/c7XV16/++a9/s/+4pewFbGxbXhLQue+a8BZie7POq+uCJPObWDBc4fAR8VHf/jwcJDU5Eysb6QlukwTypU7Iiki0ig1yd4masLrkOeFBVZ6nqyoaMpcNYIAC8hVHKt0VEkAeAPGcc38GYaNuxNKXnjkNc6nDyq+u3FzyxctOMYCg2jbomEAz8Yt7yP4f00MzKRdhFFO5TCqdjI7EfSyXnAM81k7GEJA2mM96vAn3FROaPOdz5LMDSPymk0CBKRw4cB6wGvgMMTvekR1F62pgfdev03cf6dC/GBDCC2HXfFYs+U85YM8ETqRGRhjJBAczxb5E46QymiOSKyDARuQqbMtAV01d8QFVfclJPDcmoRe7vNCy6e9UZhqGYoHkYB7AaGpgn5cOiVwXOde0XV2Ne0/tA/s2Pz/vpzoqqr1TUBvaFVCuqA8HqkGr1joqqTV+YteDPv1+4co97fw2mQRvZ2NvZ7R8R8YvIaCwt+Uf32YWNOV8NINkIM9xH9Qow1pGBjhlcWvoc4PVUKjaFZFA6cmAn4FlsCPohFqwn4vlFMs7MyTp/84gBV2DXu2IElkpMnzmF5sEsbI1KhBDw3HE4liahxaRkg9NKsjAm6X7f1OKyxrzX1SLC7R95wEZgCcbwbPKCKiL9gQHYFPKAiHQDQlGNueXuM8PycW9imrAvAV/G0oaPY8ZvHLbIbxKRQr8nFz590/kdXlu//YrVe8s3P/VRqYfl/jthF847jhWbBxxwrRztsN7Otlhv5T4sBVsrIopJXD3WGKcgAZI2mO7773SNzOE6btx2l6PEGIyqnvL+U0gWnyPBYu3q4T/04M6Q3XtdsHs2ZTCbCb6pxaXBaSWzsPJNrNadGuAt39Tij47vkSWPE24wg9NKioCfYtFgEEgLTitZAHzPN7V4Xrz3iUh76o1kBlY7XABsbw7iidg8y1EYWzac4hyKMVcjcZD6CBPsBssDvoTJyPXGJrh3xuohu1whvGcgpA9f9uBr7d02/bCepU5YCnaz1uu1hiPMjm7//YAzgQWqeujicoZ4A5ZCfvlozwGNNJjuGD5wUfVojEHbrBDTzS2ghQgmpNBqMBnrC0yEHmflZLWbX1GlmMGsI2UwmxtTsWBiGBbth3EQUwC64UQcVLI4oSnZ4LSSXlgkeDPmceRgTf5jgBeD00quC2/r6oCdRORsEbkJuBgz+HOA/6nqPFXd2kzGMhy9HepfdGnGQqwGEokKbMabX0QGYALtGzDW3VKs3ngtNhEkHBENxyKkGszr7YlRrwuwiygIvO0+NywdVYMxentgLNinI41lBBYA+SIy8KhOgiFEIw2mwxxsMvygZjiGQ3Cp2HMxBnAqFZtCY9CQ5B1AMNuk8cIRZgWtROO0tcA3tfgg5kxP3lZ2YGFNXWA15tzfApzR2Ozi8caJjjDvxwTKY6VKslV1+vVnDln6+LsrCjHCTh1G2nnlWCm6uNTMpZgyTmTqdTCwKjrN6NKwacBNWD3zJZeaPA3TcvwI+AOmx7gLM4b9sNE3YHJStdRrPbbH0rZb3Ov5QLnrrbwOIxY9Gc9gqM30exW4SmxCQNlRnA5ogsF06euX3THsbsbU6XmYo5GMDm4KKRxCQHWhB309OVJwJAJ171RUlWHGtS2wPErSMoVmgG9qcQh4vrtIDrbWtRp1rhMWYbro8iwS1BUCwZDvE2cPvxMrvj+nqjNU9d1jaCzTsNltK1V1dcTzfqyW+UHU9vkichGWFt6gqk85Y5mOkQYKgCUuElzu9j0CWKc2mTwXGxW0BIsse7vv+mbEx+Rhke1FGGNvVkPRlTOSCzGm7tE0ATc1wgwfw1xMpD2R1FhScOIM7TDWcAopJAWX+Rnx7c3bP1JjYMZDNfCXA6FQCLvnMrEsUQrHAE64IJ9WMtYrjBOZkh1OAwNO0/y+jGvPGJypqu81Q6SUEK4FZAImsRbdqhBuJTngtk0Xm0B+LbAbo6Pvda/lAle55/+BTSv3VPV9jKBzA8aWBas1rsYums7Y5PcF4YhMzAO7Aqu9zMZITMm0waCqK91+RzXyVBy2G5poMN0xrMcyAhfEUfZICi4Vex4pVmwKSUJsQPoQLPPTaca+8r/4bFJGrJaraoyN/hNsTeyAOYsnTO7xY4AcoFZbyLSjZHEiU7K1NLwYKyZJdTxwLnazzI3x2lBslI0AA4HTMaHhmS5SHAnkiU0FuRQbqroUDomfD8XqmXsxozn0jHZ5Ff89e8BlEwrb9NtfF8y/f932nL+v3bZ6f13wDfe+U7BabgVWz8zjyP7LhjAHuF5ESpuo+nNUBtNhIXA5pkDU1OjwPCwdnkrFppAQ7h7th92jZZgKVDgj9YPSkQOXAT8E+gVUJaha5xP5vV/kJ0VLVlZi7+9KiiF7rNFqhkZH4kQazHlAwllZtYFg7dLN22cfTYiUDERkOBbhPR1NGnJs2TCux26kF6LSwgewlO0A4E1VXRvx2ttYLW8tZjjv+3r/bl+6e2jPO9M9CXoiOW3T0/jWoO6h7w7u0T8Ep4tINUYEeglTzynHRbmN+V6qWiMir2Fp0aao/8Qc79XIYwi5mup1IrJTVTc35v0RqdjXj+Y4Uji54QxlL+x+qQZmq+oRDmbRkpWPAo+WjhzY/qa1m29cVlW9szKkiyLuDQ/jEQRIGcxjiVZpME9YStY3tfgAJmYccxFX1WBlbW35eSX/OFdEbhaRDsfiONyCPAxr+Yg1sucsjJg0Blikqs/EqKF2wCLUl6OMZbiWtwoj7OyunDQ668fDTrkz0+dlepZyBSDb7/MyfF5Gmshzn+5V2Bd4VG0CSLil5JBgQWPgFo0VwPlNSIs2C+HBLUavAuNdT2lScLXPc7FU7LHq6UyhlUNEumPlkZHA26r6dCxjGYmiJSv3LKio2l4Z0u2Yc3pod1iEuSfZ8kcKTULKYDYBdwJvYD04kYvzQRHZ0SY766xgSP+Eifd+U0SudGnPZoFjno7GIsaKqNcyRGQClmJdhKVf18fYx6lYmnalqsaLAN/Daombd1TXlngSP7L3Cf4/n9FvrBMi8LBcfxBj7pU1+kvWf74Pqxs3BkcdYR7akZ2b97FoN1ki0nnAmlQqNoVYEJHOTtHrHOA9VX28kRmMKoxr0EPqJwilYf3OG5v3aFOIQspgNha+qcW1GKnlOuAFTGT8HeDrQD/f1OINasOL78XEeIcBd4jIhSLS5mg+26kDXYSlbvZEPB8mC0zGxNQfVNXF0WQTt90YjNk6E6hx7NhY6I4xbIe0SfNf40nMWXvh/frcZ4MxZyuJElxvLFya+TVghIh0asxbm/J5CY5jKZa+PrehbUWkFxa5p2ZcpnAYRKSDmD70+ZjsZUxnNglUYdd4BfWSkrmYc5piyB5bFND0AOCE4UT3YYZ7cl4mgTKNS8e9LSIrMGbpqcBgEVkKLFaby5g0XKrvUkx6bnPE890xb7UCM+CXEmPOomszuRBzOJ5W1ToROYDdbLHqHiOxeuQdvvhGNRJhRZI86tOxjSX8HAZVPSgi86iXzkuGndZsEWYE3gCuFZH+Gn8wdSYWXb6cSsWmEIYTFDkDM26LOXxGbFNQjd1rG7C07DbqxVNKj+pgU4gLF83nYc5zq8IJN5iNgaruB54RkWVYTXEg0E9EVmIpmXgzKA/BGbtLsF7Ile65tpihzMNqIJucUs6OaGPsWhwmYoZxbsQNewBT2CnDvKd27jEAY+z1Bjrsqqmt6pKVkZDsVBcK7ci2iypcvyzEKf8cDVR1nYgUYWnoZKaaNwdLNvoYakXkJeBKEdmzecSAvZhD0QWr0S7GItA1roabwsccTmXrNEzl6n0sK9QcjlQVZjDXYA7wfOze9dFIgl0KjUIeUNEaW8RalcEMQ1U3iEgpttCOwG6kPmKDjJeoamWgeEoOltociOXKH0v7yQOrsDTOAeAdF8mcgRmzxcCKCAM4FLuBDsGlcS8FVqvqIhHJcTXVdhiLdZD7rArMoO51r72PkYfmzN6xXyb36HiT3zPJu2gEQ1oze0fZLOATmLFah6mONJdazlsYY7VfpDhDHDS7wQSb0C4ib323S4c7VfUmR+gKAr6AavkPu3b83w+37vpec39uCq0LTnXrNKw0shx4OA4xr6moAtqp6m4R8bkyTzuMCb+vGT8nhcPRKuuXANLalZ+c93kuRgUvB9q98MkJvS84pfOdIhLC0qR1QGBXRfV75973/O827K94ApO6G4l5l4tV6+dTikgXYIyqznD/T8Mk7K4ANmEkpXaYQdmDGcbwov8SphLSFzPGI7Ch02tU9aURbXP7PXTOwDd75mTme3K40Qyp1lYFQ5ty/L7h2TPnZQO3us+pBv7RXBJzYsL1l2MSe3HT2SIyFChQ1TfjbdNUlI4ceE1Q9WGfHOk4qGqViHy6aMnKR5r7c1No+XCO7EgsO/MR5gQ3+4xEV4IZpqqzTs/JmnhX146jllXWXH8gFCr9WmH7G4uWrGx1KcPWABEZhs0QfutEH0tj0eoNZhgi0hM49++Xnz1k6ojed/o874iFOBAK1VUFgos7/HrG70LW7jE/UkHI5dYLgCsxI7UfM1jdMabuXOwG3gvsjaSdi0g/rL66071nnXvfDsyYPobVIi/onZO57/HRg7/YLy9rfG1IFRC/J97emrpZl72x/B/L91c87/Z5HeYFt8eURyoxT3vdUdZuwsawHza6LOa+HPmprarGnRrTFJSOHJiG1WQTMZ7LgU5FS1Y2x5iyFE4g5hYWCXAB8A3MCO7HWsoeGLOj9FAZxZHmhgFDsPvnvWj2enNCRDp4MHbjiAGnqur/C4IKZISU2jRPQsDdwD1FS1aeHItkC4HYDN99qho9+anFo1WmZGNBVTee3qX9lpuH9bonlrEE8HteWpafkU/fdH7FFQ+9Nhdo5wxtOK1agEWJQzADtxOrH/qA+6L7Lx2jtQcWTQ7ARnO9iqkAtcFSSV0xQlN3rHb40rqK6p0jX1ycPap93s8v6dx2bHldsN2zW/esXXOw+iksBRVGnjueeRjNvac7trNd3XZFE8QIwudruatnnoGp8cTcjGOQksVqwA1de4JJDM5sYLsUgPvyO7bBJj6MxAzSTGDBbeW7TuhiP7ewyA88islO5lB/PQ0Efji3sOi8sTu3bKQ+47OZBjIfzYjqh/t0vxXTXM4IX5A+Ibx+/Ai7/+49DsfycUIbjGjV6nDSGEyABZ+5bDBGlIkLTyS9U3bm/2F1wb33XHR6l1tH9LmpICPtbMArr6lb/fK6bQ+s2L1/YcmcpaMwg/hUhI6sYJFiP0xZZA+W1n0LmKyqG9x2IzGG6SrMEJ+JCafvca+/vWDPgesW7DnwFmZUa7E5mPnu9Qz3/rbYjE/FLrINjqQ0BJgsIpuBDxpq1I6D14EbRGSL1k9HicSxMph9gZhOTQSy3HYpNID78jveBvwJ+72ysWzE54EP78vvOPG28l17Er3/GONnWPtWdtTzOaqaFYB56fCtWss4PKOqx612+Nag3lld0/yXE38dzAZKSkcO/HvRkpVNckxTiIlWW8M8qQwmlvpMyJ7zRKQwNzMLmFF31y2fAX6JLc4CUJCZPuz6QT1+MGLvgfE/m7vsb0GbQFLjyD193aMWE01/TFUPBoqnZAKT15cd/EbN92/5dFUg8O65RR3L3yrdtQZL7Z6OLQaHLhLHxA1hTdJVGMmgHW62JhZdhoDq6PqNW1TmichCrLY6XkRqsV7PtckyCFW1WkRed+9/LEad6JgYzKBquUDQSyw8VEsrvamOJ+7L73gV8EcOH44cFrwYDsy+L7/jqbeV7zrujMS5hUXZwBc50lgCrpdZteBf7TqFpuzZ0RwDzxuF7ulp1wUaLm2EsHp/KtPRDHBrWybGA2l1ONkMZikNDIoNhEL62vrtXUd37zS7Nhg8I93nO+IciEh2r7a552/6+vWPdbv30YGuPpmBGckXVPVQr2WgeMoQrEUjq1eb3FyALL//7FemXCRzNu64b+KDr9ZiEWqsWsxGLFJdgxnMvrj2FPdII0HqwjEGl4vIB9g4saHYdJRwurbBi1JVS0VkDTAe6z2NRJPHe8WCI2gNGJaVkf5Mv54JW2uwRf+J5vrskxH35XcU4DfEMUjYvXAK1kY161gdh8u6+LDfzO/+9v2nXafxvXz+hI6RXyQrX7xJrqfacw+J+Dv6/415LeHrD/QqumRMXnZDfdFpWEYpheZBPlDeVBGWE42TymD6S6avChRPWU0CCThPpObdbXt+8MsLT/uqL4FEm9/zMkF/DnwJEy9YG/0jB4qn5GGN+O2IMCw+T9J8CONOKZy68/8mvdzxNzPiERf8wDKctB4WJZRj0WUeZqQbTLW649oMbHZGaQg2pWQbNgR3a8IdmLrS1SIyVFWXR712VAbT1XlPwb5je2DNsqqaRwSGB1Q/7Y/BksXITTOLlqxM9cIlRj+MjJYIedUa+rJzqnwRD3/U/2M9kt3Gw2p9hz0W1lQP65Gd629I+SJYf72Hoh7BiL816jVN8FpDrysQOjM3KycEl3mJywN1pHoymxNtaMWZo5PKYDp8EWvtOMLrDgRDNWU1tc//aeHK++ruuuWnDYmRd8jO7FCQkdZ9f01dR6BaRMK9lXuBvfu/fdP12Wn+TOIYFb/nZbTNyvgBRnqIhXxsluYobOErxYhD4Qgzm0YKrjuyxNsi8i62oJ7nvuYH2IisI9K1Wj9R5BoR2RYhFdjkCNPVWQe6Y9iDOQQbVDUoIjJ0+ZpHn+/fs3+P9LRzXNuOP6QaCkFA4AWfyOea8rkfM7TFFvSEqFV6YD3CAWIYNveodf8m2iaAXROHbROvAX1uYdGbwP8lOraAas3aQN16LEW3PswVOB4oHTnw4aDq7xrYTIBnj8PhfFzQauuXcBIaTH/J9DcDxVMuB/4LtK0LhtJ8ntR5Ir6qQPC+Xr9/fEH1b6V33V23JLW/oOogLLUl2E1dhdUl63ZVVH+2Z5vcnETvB/oFiqd09pdMPyxSdE3ZQbV5mu9iwgaPYczafMxw1mkTB2c76bsVwAqxEWVDgTOduMMH0SxEVS0XkfnABBF53BlW9TXCYDrD1xszlHlYC04sxuOoA6FQzuiV6y/ZPGJAP+C2jTW15+0LBvf8Z3fZW4/vK5/VzA3qJys20TB5KpDveW+panS6/ZhjzI7S0rmFRXMxsZCYa40PQrNrqn6L8Q+udRKT67HWqWPKlC1asnLf8/1P+d+QrIybPFPwikYl8J2iJSubvQf0Y4wCjlLm80TipOnDjEageIoAox9avv7m0T06ze+en/OEv2R6uVOVuXT3nZNvKMhMvxxLK8VEdSC4Pu8XD92K3cydsWJ1uGidufUbN3ymY05mYbz3wyEN1xH+kunrIp8Xm5QySlWfEhsxNgV40i9y0bkd8rfurqnr+dGByg8DIX3yKE7DYRAbrTUYa4HZiUWdpZGpZhG54P917tD7q4XtL1fVywG/iKwHfg3cV7Rk5RGGTEQ6YkayN3YzrAQ2x+rvFJERGFHpaVWtiXj+SszzzMcip4dSOrIN4y957ednIGclyJZUAufdVr5ryXE8rEOYW1jUHRPQb0eU0XTO4u1jdpQ+DIf6oDtj11EvTDErbDyPSVSSJnLmM/16fqZ/ZvrtIVC/iPhFKrE083eLlqz847H43I8TgtNK2gKfAq7esf9gB1V9pnObvHt9U4tb3RSik9ZghiEiN2JEnf0Rz3W6/dS+n//LZaO+G8ezJBgKVfk87w5/yfT/uvd4WP69g3t0fPczlxUP69T2NC8BqyEQCtUO/svTl60vO/gRsDVsRERkANBVVWeLSOdcv++SaaMGTBzfqeCyNM/LBiSouj3D590N/Cdrxtxm+6EcU60PFnX6qU/X1q4e3v+TaSL3+cxQRpafKjH5wAuLlqyscW0v/TBD6ceiyY8S9YWKSH+s7/MIEpSIXIoRnE7HjO5OtekmKcSA2CzVsWPSMvpPzcj9qctYRF+HlcCjt5Xvmnr8j7AecwuLugAlwM1YyT1tSzC4a0Wg9gcl+/f+K9Z7Itq3wsazGhMzWNfUrEuczxkKXNne5zvlE+0LBvTOSK+c1K7gv8DTqVaSo0dwWsmFGHnPw5XJnJKXAlN8U4sfP5HH11h8HAzmTVj/Y7SIepdHbxj3mysHFF0rkBnpodcFQzUrdpW9N+rfz383qDonnhJO9fc/eZZPZLZbrI5AIBQKLd629+3z/vPCv6mf+rEeMwyFQI2qLj6zfV67B88Z9EaXzPR+viM1ZiuAh4DPNafRDMNFukOBbpcX5O3/a88uD0ocJwKo2l0X+OepK9Y+hfWnbsKiyW0Nsd5EpAcwDmuvKYvx+kXAWiw1vRCTO3w4FWUeCedsjcJUn5b8O6/DcOB+oF9AVQD81rL0B6D4RLSUxMLcwqJMrI3qwNidW0ZjspE/S+LaEex+CRvPWuojz1jTgZKG2JCFX2AqXl0xp/aeo9lnCobgtJI+mI52vLJVJTDaN7X4iIlQLRUnXQ0zBmJGf6q6TUS+fec5gzfcfmq/a/q0ze3jbsxl68sO/uWsf88KhpS22MDjV2Mt3Jk//d/Cbd+c9HSbzPRr03yHqwsFQqFQXTC078vPL3wQMy55WC10CCbu3AVYKCIV2645+9Jsn9ff58Uc/ZWDCbE/Crx4FOchJpzgwXYRyfm/zu3/EAJ/gunOWQU+32e6pfn/s6Uu8Fay+p4iUohrW0kQHQSw67EU0//dgRFVliX7XVo77pB8D5OGywXW/U3LD2NnuqhyDHZNPBdBzloCjLwvv+PQ+YGaT+4OBQuuyci587byXS0qQhqzo7QaY3ODyBuY+s8AzOmKC2dQw9fp25jR7Q1MFJEA9cazKQINp2PchDRsPmOqXtl8+CaJ2/wyge8Bk47P4Rw9Pi4GM6YH63oQH//N2yvygbHhG24wEPqrDMfSlgHgMhF5IZqIIiJdPOH50q/fsLRjTuY3gKyaQNDv9zzfsp1lH3z+2benvbd937/URlrlUn+jhyebTADG1wZDlxWk+RNdWNnA/yMJg+nSqGHKf6P+7paWdqbPiDtxkeZJaP7gPtXJEiEcW/ZibCRToppF2GBuwc7NAuBSEfnw4xBl3iH5twE/oV4OMeMOyZ8LfOlvWr7apbPPxtLnL8XKetxWvmv57SIvA2c+XVPZooxlNFT1gBPeuFREPkq2L89tt9M95rv6eW/gYpfmW4exbRscVPD24D4dS7p2+uKpOZlZewLBYa+WV7zxwJ6yVktIaYGYjDki8eBhut2tBh9rg+mQBryC3bjPRUhzLcNSNGFm7FUiMitco3OG4MKQ8mqX387cEiie8itgyLdeWXzVi2u3Hly778CrmKEYDbzmRAQOYt7wq06Z57FuWendO2Sk3dDQd6gNhs7KFrmWho1fZA9bsDF/B9AEweVhSGpxc07CpZjI/eYGNq+j3mCOx7z9nViNNLo39KTCHZJ/N/AtjkxdTVD0nQGS9k2sP/e5JKKoAxyu+tOS8TomyN4bS8c3Gs4w7gIWOEJfb4zpLdRHnkc4aqUjB36hW5r/d59sX+CleZ4/pKpjcnMG/F/n9ttLRw58qmjJylZHSGmByExim/TgtBLxTS1uFbXBlMG0G+wFrKn+MhF5RlXLVVWdbNx1mPj5IaOJRUOXAgvCGqz+kulBYOlffiIdMd3Y1Vh6ra/Tav3o0AFZzTOgqvurJo85SBISdD5PqoE3SWz8QkejoFE6cuBDqvq9BDVMsPpRg4ub2IimyzDhhIbmboKLMF00vhcjfCwGLnFRZouowzU37pD8nsB3ib24eED+uWTesYqDZ8erpUehEpNX9JLc/oTBlUXWYGWPdUer/qI2HGE3Vupoh93b4x3JbT0Wfe7cPGLAtar6G08kPczX80TEEzLaiK8bMLt05MDhRUtWnpTX3HHEauDUBrbZ1FqMJdQTUU52xPxBnEcaVNW9blFfDFzhIiNcje41jKyyCitgX4vl3Feq6qoYuz2AGdcOmCB7LTZdpE3ENoead7NmzA1PI4mLkGpQladUdaeq7lHVMmfUK1S1WlVrVTV4tAvOD7fsnBVMcE0EVWuCqvcWLVmZMEXqFqiJwMZGMF3DKVmwOmaRWwD3YFHmyYo7SHDOBZEMZNjnyeuS5P7C4gLx5PJaGl7HMjm9mnOn7p5+V22m7fPYfTjGg09Wh0J/jEfU8+za7YFdvyk0ESLS/n9vvf9KXTCYqHRTCfz2eB1Tc+DjYDATRZi9Mc8TAFX9EEvFXhG+oRwpZjlWb1zl9tef+HJZFdiF0EltcskeLGV0oTMkYL2GkX1lPw4mINAoBD614KOPXL9ms8Naz2T0v3fvGzD3QMXXA2aADzOKqlqxOxB8f8jy1UtFYpKTwvvysOkUZaq6oBGHcYTBdH8vAkZKAhnDVo6RNKB/jJHEkp3cUucerSUtuxZTzhrTkPJWU6Gq+1R1kao++lCf7h+lWfSZCLnAbcfiWE52iEiWiIwFLvvaA8/91+9587D1MBrVWD3+H8f1AI8SH3eD2YsIgwmgqssw1t4VEanJJdiCfjvG3vwLlkY6JcY+K7AFLixo8DbWtH0QI22ARZiH2lyyZsx9dVlZxZ+DIa0JRqTRQqbWU+kT+cTjpbsfAE4TkctEpCCZL54MXJR9HbZoP3Pr+i1l0/eUXSYi99eG9EDIaraLReQz62pqz60I6T7s3ByRQnQL3jjsfM9p5KFEGsxdQJ6IZLka1R6MTXkyoiyJbTySn+4QwAxmq4gwXap9LuYg9TzWn3dubraPJOQEsQxRCklCRHxiIw0nYdH8I/sqqpaLyGXYPNH9WPatHLuW/waM800tblWs5I9LDfPIJ83L9MVi06nqEhcNXiYiz6qN99qHkXheUtUtrpY5UUQyVTWSFl+BXTCd3L52i0ipe66nM7IFWD3lEM59Zcm/LuvSzvvmwKIxw9vkFKWJ1LxfdnDpWe3zv5I1Y+5GtWN+HOuZvFpMTHtJU2t7zrgNwyKctzBP/xJgY3HpjrcxYtJzwFth0sQkQGGuiJzhjuE5PXwiyigsen6uCfWzQwZTTdt2K6avuwYnmCAiK1t6Xa4JeAAbH5WXYJsqzGlLBgH3aBUG0+FDjOh1Fsd+sPBGbSD6VtM7/vAYH8dJAxHphQUDezBRkkPZM9/U4jrgruC0kh9jpRUP+Mg3tbjqhBzsUeLjYjBjRZhHRJeRUNV3I4zmKrf9H4DRIrLTGcJn3OuZqrrEvfUgFq3ViUiBu3jeAW7Aoq4x7niim3V11ra97WZt2/ttTFFoLlZH2Rc+eGcslorIOuAcYJKIvJkEA/XwE2L9fOMxZu0TjuJ/qjvuyDRqNjH60ty5qcZIUM+r6j4RGQ50xyTvmtIGEhlhQn1ado2q7hSRMiwVnrBnrxXiBWB7CM32iJl2rgR++DctT9YxCgujt5aUbFgibxFwuoj0VNWNx+qzur//UdYr/U/Z3j8zvVu8FHAQgneX7vhgukhXbXjSz8cWLjt1DqZnPEdjD6EHwDe1uBZo9cpdH4eULDTBYAKo6nz33tuBF1V1HeYNXyAi4ozh00A/ETnb3YDVmOHZhUvLqsnALcdqpksxTzp6KkMPzICtwgxHAFPS6RHjuA6q6ssYa/Y8EbnQGcEG4SLc67Aa7LPOWBZhggqvRkVwWcSuP6A2BuwdLD17Nhb5ztIIfdhGIp7BDGMRcKocLtfX6vE3LQ++TfXUavSgUh+th9BAEA3WoH/H0lfJImwwW1OECXZ/BDEhgWOJK/+4c88fRORgLJJcULXaB/+dvqfsBWCsiFzhhDc+FggUT8kIFE+5OFA8ZVKgeMrIWNuISLaIjMM6BdYAjyUylicTPpYRpmOsZtLA6CyXts3HWKxni8gLWHrwcowuvVhVK0TkaSwaHIdFkRWYQeyEGUAwhu2NWOqzFpvZ+Y77HD8WPdUCW6k3mBsxQxazD1FVN4vIo1ha9XoRWYK1ccQSPU/DvMGumPHf6Z7PxaLN1zRC39URezRRtKiqq0WkPSas/AeNPSQ7WRxmMNWmpwREpJ1jPO4QkXJM9OGjuHtpZXB18kkrqLvxdvLSgVuBtgfQrbOprthBsLHtFnW0QoPpMjbrgCIR6aGqm5r7M8Sm9vR/quzAXQMz92y4uk3en4vS03JrVT1B1BN0WWX1zFNzsj7vygJrsftygivJvOOY2ycd3LCKb2PKO+HrzRconrIZ+LS/ZPp8R7wbhq1dHwGP6MdsqtDH0mDiostEC5GL2C7Forh1wAUY+/MlrNXkOhHZrqpbXY3zOeBCrM5ZhaVm+4f3p6oBEXkHG3W0ABjg+jO3uu3qMLagUm8wtwDni0h6vAvTGbR3RWQ1cB7QX0TmOXZv+Lt0dMe/A/MG69zzPnfMy2KknuJGlxH77eSO/Y9YOq3aReFNQXSECfVRZlgvdBHWV7f6ZKhluozEHcCGOtWwitMz7rU84CaM6NVXVdckudvW1lYSiWVY/+1pWHaluXEFVgs+8Mvtu8/65fbdN2weMWDHvdt3F1eHtPL5/Qdmbq0LhMLXlvt3pbu3BmCchZ3Au3qUGrYtEL8BPs+R4hkDgVcfuWHsLViQsZvYI/s+Fjip0ltxEKtOkTAd66KrS7Foba0zrLOxhWgClnZ9HTNmWXDIcL2EMWSHYoavTUQrCVgjby6mLjQ74v1D3fu2YIbKjwkb1GFGLjI1GROqul9VZ2ER8AQRGScimY65dil2k78eNpYOZwOVqvp+jF1mYYY/3jlqg5GEZqvqB8BzwDkiMrihY42DRAYTONTic5DkWyxaOi7Gvt8/o19QG6S8HctC3NqIfbZmg7kB+33buzJBs8HV24Zj1+llmDM4r/v7H63988697/97977tW+sCB7Bzdxhcj/MK4GGslHG5iEyQw3urWy0CxVN6AV8kvkh69vmndP4t8IaqvvxxNZbw8TGYkfMe8zCjFVMzUur7CLdHGhLnbb6KGbvxmHFbjRk9idjmdbfvS7Gbv2PEPhTL+Z+CGcLVGBnIc8e5lQiD6d62kRh1zHhwEd5MrB76M8woPq6qh6nziEhfjKTzepxdxTWYLo17GRGSd87jfgYYLiKnJXu8EYhlMLcChVFOxyIs6mrV165YT+3VwF9UNZ5jshq7zrLFetuSQasj/YTh7o/lmEPa3LXMiVh5pBJz9B5w96vfPZeDlUTiZi5UNeDazh7GGKFXich4Eclv5mM93vgMDdiCtpnpneruuiURk/tjgVa96CSJ6JRsL2BDgpTeWGzReTP6BdfC8RLmvY/BBuP6sTFF4W0UmI+RfsJDlSMRwCKnoe79/TBZvo2Ygc3D1IfCx7wJ6BGP0RcH3bHI5SnMI77QedjAodrsuViLTLwaREyDKTYHMxx9HyZ55zzPp4FeInJuI4/5CIPpji0skxd+bhtWI+7TiH23KIiJYnwBI10lkhlch021eRRjRDckcBC+/gKAut+qtWEldh3kiUi35tihWN/ymVh0+Qngg4hrNw0z0LmYwWywXqyqdY4V/zDGVbhGRMY4R7I1YhANiGeISB3m6H+s8XE0mL2J6oE8tKH1F7bB2KLxJpwEsKkhbbHo7TVgmNhcyTAqMEM1H7gy0lhhPZhzsPRQIWYQ+2CNvZXYjXuIaONSc5W4vs6EX1QkXUTGY0Oan1fVNzADthITlz/X1WYvAt5uoA5zhMGUesm7TRpH8k5N6OAZrPH7/EZEggFiTzaIZstCfZR5TJRhjiXcMd+OXR8vJNrWOQybsWbvLZgsYzKowxb/1hhl1mJZmEqsltkcuJB6Mt1g4JGI19Kwc+XD1omka+NqiliL3P5qMOLdeRJHdq8FY2cSnACP5EQ2Tmp8HAxm2OsOE3kKsJvnMIgNku2LMUgT9hG6OuDzWOQzBHgDazUJq99UYCmet7H07GWOoQfGut2KpYeux+ShtmHRaB0WYUZ/fsz2kqjjL8TaRUIYsWdX+LurCSvMxBaMYvd0Q4LohxlMZ/guxAz7wkRvdIveLGwxuiQqpRrvPQHAF8MIlmICBpHbbnXH1hqjzAuxLMc/kiQurcKIVQ9gten2SbwngC3grW3hDmM5dh/kRtw3TYKL+s7FnJMbMWc4cuKLn/rhBT4aYTDDUNUaVV0IzHDvnyTWZpbMtI4TChHpXDJn6cpA6DBuQyxU4lj9H2ec1AYzxuLbCxMED0Vt1x1L2TyfoJ50GCKMQncsmlqH1TbBGUwXHe7BlHQudISYOvfeD7AoMw0j6mzGUiPxDGZM2TAR8VzN8GKspjgnlsFX06otw7VkiMjlEkNir3TkQH/pyIFjflVUeP6vigq7R7wUrqHNSabNwR3Dy5hhuzzJ9GAAW7QiEZbJi178F9PKokwxRZSrgX/q4QpJibAFyzocxDIWtyTxnlZtMNX6m3cA+zj6KHMMFqG3x85H9EzZNOyaq8Aa8JvMvlbVKlV9G0uh+4EbReTMlpYaF8MpInINMP7n85a/6PfkXeyaiYVK4Dv+kumtnpl+tDipDSax65eHsWNduvR8rJ4XKYjeIJwRmoXVIauBTDHFm0r3t4fNdAy57S7AFj+waPZN99nrsGg0k/oWk0jswIgfh9VIHIHpSqzO9Zia2HtMiEgXrNY6E7uhN2HydmeEI8DSkQM/j0XEz93QtuA7N7UreLx05MDlJUWFn8FS1a80pp3DbfuGO/4rk0hVxapjhjCjER1llmI3+DERpG9uuOzGZ4GX1UT+k4L7/muwa+wRrB2pIV3d1iiPF43IKLNzQxvHgmOgj6NeNevJGA5xGrYOVmD331EbBbUpQvOAx7BMzY0icloyNehjCTG914HYYOdTsd7wR2qDwQ/FNF/nY2tX+BxUYeva3f6S6fefgENucTjZDSY4g+lunvZYig/3XB52I81V1YQiBnF3bjW7Z7HocAtmlDpiF1s2Ziw6qTU8zwe6uIhwCBaBhTVnAxgLdyjm6UZ+hmIR6KG0rIj0w2pa6zGFnbg9k85QTcBaQA6qasix/R7DDOGkhYP7/BIbtdMeyEvzJNudsyFT2rf506LBffY3lKqOc35UTTFpDWagEzEKYzFlIXYdE1pJlOkcp1uxiOm5JuxiNWYww/XhKQ1851ZbwwzDOURg91RTGbOjsGuqCMv0xEop+rEIMzx4u9miKHevzQGexEpBN4nIiGRKFM0Jx20YiRGeTsGyRE+o6vpwtshfMr3cXzJ9PBaR/xa4DyvfdPeXTL/neB5vS8bJLlwQGWGeAmx2TNdItucSVU0okdcQ1NR+nsWivS2YcarBosmdWLoX7MZ8HqupZGL1zDeBM0VkI1bL3A4MFRF/lIHaiEUXa4DRWBr4uah6zBGIqD2uiFiEDh038MqXC9uPLEzzTyM26Qa/SEanNP9fMKegSVATtI/Un4113PGIP1swIlP0PjeLyOlY5qCpggnHA+dj9dafNtHp2CMitVgm4UW3v/FYL28sBDCD2ZojTLAosyeQLyKFjXFqXTR3ISaGcCbwN409qCCckj2A3ZPNPszYscdni0hbzPjfJCLvY/fkMRtS7bIawzDRhY2YY51QcMFfMn0x5oimEAMne4QZaTAPpWPFFG4uxgxoTNm5xsLVK5/DpOcCWKowB6vBtXeGqwCLOHdg7RLXYASaCoz0U4nVqvZTPwosjFIsXTsZWwwfb8hYOpyFRRzRYu+H8J0uHS/2jPSQCN1LRw4cmcTnxYUjH72J1TRjDUSOGWG6BadOYs8xbNFRpqtbXgFMV9V9R7GrVUB/l6L9H6Y0Fa82djKkZMEi607u38bWMk/FjGFPrI0knlKS3z0OcJQ1zIagNpfzFcxp7ooZzsGNYJInBRFp59jyN2Br4GNqoiUnmzrRccfHIcLEsdU6AS+5hXU8ljKd35wfpqr7xcZ+XYGlNoer6loxDdT2WESZiTkqDwMlmKFc8K1B3b9RPKTH6XUhHesTgpsraz6ccd7gn09+c8Xj7oYKTwN5R1XfSuZ4xJrje2HG9QjP2e233aLBfc7rlOZPyOgLqYYCSl+SHzMVE6q63kVLF4nIG6q6cW5hkQBj723T/qoevrQRcwuLnhqzozTay42WyQvvb5OLMnty7EdDNQou5f9pbERaLDWlxmANMNllHt4XGxl3HfBQjG3DMzFbbUoWDslJrsQMWVsR6aROAzkRXMrzYixj0wm4P8Hmadg6uB8rTxxzYotzdF8Uk5Y8AxghIouBIyQfqyaPaQ9MwUo4e4CHsmbMjXktRfAUOmLR+cPa9GEIKcTASW0wfzHhtIzpS9dl766s7r2jonqruwFHYZHfc8mwPRsLVd3rjGZvgXHLLj0jb+vVZ38nP83XO6gqO6rrFs/eWfaHz7+zuggnpTf7guF/OaNd3hUeZGT6PAHolZN5Wo/sjIfWXHHWz7DifA1G+khqERST7RqDRXR9XNtJJyyV2x4bal0AVL9fWd15Qn6OegmitDrV9F9t3z3+Hxad78MYt/vCfzcm1ag2T/R54JKv57UZcn127h+BTqemZWSJLVh3zi0s+gi4esyO0vDoslKshy5W/+dibOHZkOwxHGu4LMYnsOzB00e7P7URWDuw0sIaYDrwQxF5WY8UBK/j5IgwwdjkN2CO2mk00LvqMBS7vrOAeQ0Y2cgIs5BjkJKNB3dcsxyp6UxgpNiYs7WqqlWTx3wDU+tS7LsEga9UTR7zNnBt1oy5B1wAcApmKDOw++PlY5nq/TjjpDSYgeIpw4Eff/PsQZd9fdRAAYJ7qmoe/+xp/cODnZ8+lheUqu5O87znnhoz5IGeORlfSPO8dABPhK5Z6aNu6dnpX4UZafddM2/F7w/ccF5/4ApfVM+WiHh+kfSOGWl3/e2Mfp/6/DurnnRtIFeKiKiqOk86F7vRCzHPspP790yM4XYuZtz2uMcmTGFoO5Yu7v1UWfnt4/KyT0tPQEbwidQ9vHf/AszZqMEW5DzsRi0QkUpiG9J4ovG7Sgrav3deRuZCVc0S648BqyelYbWXt+cWFg0Zs6N0P9a7en6M2i6qulFETheRUxIxhY8zxmN1y3ub0ctfhdWj1qjqVhF5C2sz+V3UdmF5vHQR8RrDbG5pcPyAcO29vYh0iOEgHEJEuaUWyyLNaeAj0jCVmzKaiSXbWKhpJD8jpmx0BnDqOxef1mNIQfaP5fB1wYc5Qeep6nPpPu/zWOapBnOqNxyLICCFepx0BjNQPOV8jEmYJSKezxZhf8fszEn3XnLGFZOH9Dz3oukvHzEUubnx/sTTzy7KTu8ZNpZhuCgu+4LCtp9bd8VZ//GJfA+7UWPC74lvXKeCr4rIBswojgUGuhsp3GZyAEtV7sYMoR9L1T2FiatHjzfLxW60W4H8p8oOvH1v9y6nY0Y21rFU+EV+sD8QnO7acHq7h2BkmzmYcW7rHl2waLCtS7/ui3iUAftUtXp8ZtYXVTUtTv3R7/Z1O/BbVa0VkT2YWERpjO0XYxHIhthn8vjBpcIvxmpHMTWLm4iN2ADzHEfYmgH8RkQGRbWqhGvB1dgCm2zPZ0vFMoxI9z72G7+UYNv+WBniINYq1tB3D5N+yjjGNcyGoDZTckubdH/PvnlZ/0zQhpUZUD3rzgFFF//8w80z1OQiUzgOOKkMZqB4SjrwODFU90XEn+Hzss8/pfM/sbmQxxQ9cjK+6kvQsOwJvkyf911VPTsRX8UTkQ4ZaacBV2GkpfUY83au+/dgZMQlIkOwGulT0ZGYq3GMxLzYNIxwNE9Vy0pHDnweczTOwIymT1VrQuAJ/METuRcsesYM80Ix1ZleWDTld8e2DnjfRcCC/RZhQ9oRW9Daikhodseut/lsTmc8ZANfwmjuUF/HjGUwNwJnyDGapZgsXBbgk9ji3qzKKK6ksB7r4X3fpWmfBm4RkbsiHKMAtvhXYqm8Vm0wVXWniFThJCJFpH0swpuryU/EvvsKEhDdIpCFRWhVnGCDGca2a87pTAOETL9IWvHQngN/tmJTylgeR5xUBhMjQUQrxRyCS9eMCBRP6e8vmb4q6rVwLSP8CJMB0rEbKT3qEflcWuTfhZlpOWuvOCthQ70n4guoXhkCX9wDdsjyedVYbeJxnIatqq6K3s6RCE7HGrQDEd+rL2Yoe2JR4dvYuK+y8HuLlqw8AIwvHTnwDCzy7CgiKz+9rnTj7AMVb8VK9bhFaw82j7MdZjzHYqnAsPHc4bz8zZHvPScjM89LTMYAIKjaSWzUU1hPdUys7ZyBXuS+/wkxmO5cT8LSgU8do/TYaqytKEz8eAlrMzkf0zUGq2HmYAbmZKhjgpFYBlMfZb4cY5veWOZkN1bHS2a4cS5WZ67hBKVkw3BZo4JnxgwZNq5TG/F78R1p5xwUHreDSwE4+Qzm2VhdLS6qA0Hfb9764Nc/sqGwYaMYjnJCEf+qewSxBShMpKhL8KgGDmT7fGXJHGzbdP8+n8g2jAIfE6qqntWqVmOR3ItYX1q2RogVuJvtQmxmXbljaA52j2z3PRcC70UaymgULVn5LlbjBGC2RaXjRWRNolqYo6zvBRY5wlFvbGHPdOnkddjItBDA2zXVB+YWFlVQn1aOifJQKIDV6WowQzREREJY/bU86rEBG2TdXd3YsWOF+/I79sTY0NlYNPMCpipzCiZ9V3GMPno74A/X8lQ1JCIPAHeIyFtq6lPhlOzJZDDXYUIEOzBWabvINgmXzbgMu55exUlANoQ0kZyfDD9l4Bf7dX2+Nhg6Nc3z7qiaPOYh4HdZM+YeVX92LIj1hxbEeeQCaX9cvbX7mE4FGbFH+R5CLTZUIYXjiJPNYIbH88S90vye1I3pWfg6ln6sxYxcLWYYg9QLMYeOhhhUNXnMT0gw6DikGlxZXrl2/u7y+Z/q1XmQz4st1BxQrX2mdM8jmBG78uz2eWd9f0iPkee0z/9m1eQxPmBpIKS/x5iva7B+xfBg4iDmDKwAFmsjpf/Axmm5tpj+JHmDOoO8GFjsUpS9MGcmJ8J4bpvTqdu/sTFXMSXDgqo179fVPIcZgCr3fQ5iNdIKLG3VGWvXCWvwZgGfcizcQ8ZUEyghNQb35XfMwRiql2LXmh+oDqrWjU/LnPV6XfU/VHVjc3xWLLhIOqz8s9s9t8yd1+uxHs2wAMR+WnlrSRjOMViBiWcsBU4rHTlwAXadH8SuhXMwp+n1ZKL7qsljfAsvPvUbfXKz+vtEMrP8PrCywR3A7VWTx1yTNWPuK409VpdpyMfaVCL/LaD+d9mPOYF+d+w+zAksfWn7vsf9IhdhbN94CBFj8HgKxxYnm8GchS3AiaKW9J/PW7YG2K9uoscxws8CIf2LP44h9ERq+udlfWn0K0vKeudmXXJOh/yBmT4v+veoqA6G/nHL/JV7gUsfPnfQ3os7t30pzRO/z2TrAAaKcM3cCSPeHffq+38IGTMz7DhsxCLKRhvKKCzCprGsaizj0n32EmCJmCxeL4xclP/9/XveKMlvN1UsYjqsZhNSDVaqVk2vPHg/RvoY6N67ORPJ7p+W1mZjIJC/X0P7sJrmVoy4kQVMHp+ROfSqrJyRQSX/g7raXX6RVcEjI9Lw40Ay3+u+/I6CNZ1Hk6PSfCLcnJEzeXJGzl8bc36aiNWYYtKCiON+APhhhsjLn83M7V2moVOrVJc+W1vVquuXUfgQuOn+Xt22FKWl/UhVT3eksrT3h/Qp/9W23Rv+t3f/dI1StEqAb/fOzRzo947QeA2XV56omjzmlKwZc2PVS32YkxYrUszErquwYdyOMZwPYCWVbpihz8bKDB8ApZEEparJYz4bVH09Dg+iAvjnsYiAU0gMOZlYyIHiKRIIhVZ7SC/Pi6meUV0bDD2d8/MHf455qrXYTbgmyXpH0qiaPEY2VVS/2DkzfVy6r54pG1JVgSoR+U72zHl/B24RKFpzxZnrO2ak/59PGAawvbp2/ayte6d9ZfHamcDm3rmZw965+NQXMz0vLxarNBDSmjd377//0jeWv4XV8JrDUB6CmDjzem2EcHgD+8sFel+YkXXu1/Pa3JUl0skDPAgoSFkotPGu8r2/W15X68O+z6vT23XqnClyb3vPd7lAyAOpUn39qaqKf/61orwC6FTk81X/tk2Hb3b0fCM8CLiFrVZVy1cF6j7z2X27VmLefjgqzcccrEriGNTwtXFffscJmC5oIofs7dvKd53bHOcoEUTkauw3PlSvvTEz9/dj0jJuyUIyg6A+8FWhpdniTbmtfFezinScKFzZJv/6P/Ts8k+/TbA5zMGsDWmgIhS6a9jy1b9saD9Vk8f4sfRuLPUowHpfywPBX3R5cv79HGkUszHDVcbhxnE/RsQLk946UG8gO2JZgVL32B0vEhaRU789qPvEu4f0uC2oFHlCwLNShAC/AH6eNWPuybN4txKcVAZTRAov7t3l5qduOv87fs/LIYItG1Kt9ESWAxf4S6ZXuIu5G2Y4u2Fpwg+bM+r0idz+sxG9zvhC3y7n+Iy9GtxWVbu0W3bGN7JnzpuPSeONBP4e9oqrJo8RgOyZ89IxZZ+eQPd/n9V/xKTuHT/v9yRuiq02FNp/zstLeq3YX3E0Emwx4QhFFwKPNHcPq4jknJue+d9xGZmSLnJweV3tq49VVaRjaegBgI5Jz+xWUtCu2DNDe2ihVAuxapfU1dy6tK72iVuy8xb4YIgXYzKEY5WeN2ZH6ZKoz/cwI5gf5xEEyn+d0/brbcUbE6cNJoxqoO9t5bu2HM05aQhio+K6qkmtcV9+x0+p6l9EYl4flcDE28p3zT2Wx3Q8sHZ4/1lpIpd48eXkqoG+RUtWJjz/VZPHDFLVhRI1ASgaO6pqV/d6duE3ONwg7idOVsLtrwhbU7q54wkbyG2qDc6dDLclnQ08eV1Rh+r8NN8Pfj2y90c5ft9e4PWsGXOPeVtcELBaLAAAzIdJREFUCrFx0hhM1/Q7AZhdd9ctZcBU4PNAu8q6wI7HPtz40pThfYr9JdOPuGBdv9MAzHhWUx91NnhxJzie7lhNaQWWQuuP1Za2YoSEizGd16dVdUkD+/J2XnvOK7l+3/kNfOxBYEzWjLkJ99dUiMil2DzRFc283/bAd4HfYN76KZgjMQ7T5+31XIcuX8wR6RtvoaxTrXii6uDfr8/KvcMXp39NVXVPKPT+dXu234b9DrvCi56LVjKwlG643hQ2mO086PSbnLbfLvB8CQc4B1SrHqmp+MFrddXvUV8fT/SowyLgRt2IYqm6TwAP/juvQzpuBFyCt2wAet9WvqvV3vClIwd2xLINcfuWVbW6IhT646Dla36LnY8s9zjs72u6tR/0n1ED/l+Gz2toVuWCrBlzo3WdD0GsLaor9VFkJpZmLcXSrI0ifznHdCJusIL7/1hVfbQx+0nh2OCkqGGKSE9scX05oon3T+5BgS2yt9z29NvZWjL9iDSlI4S8JyJLsIt+EDBKRNZiUWdcZZE4x5OGtT/McfvLw7z8Ptgw6bGYks38JIxlPjCkrDbQOdffUAMKQaJGgzUzFmEasB81c5TZHTMeu107zApghYjsBtpcmpktmSK9E0QVpImErsvKvSiesQRjUrb1vKGdPd/U7aFgG4xtHFbFCRPAQthvVYE5IBVZSNWPc9p8Il+8NqpKogBTIG1tsK4d5gyF1WbCcwXDTF/h8BalNHcchxnRJB4HgGHVqmdkQChx4EsHjBSTlA5xC8UAGqCOikjm/mBoIiYJGe7drMJ+SwEyv9Sv65Cv9ut2bbrX4GDnGuAw0o/LLnTE7usijGy3CzOQrwF7mtpO5JjtF2OkpXDdtBPmDKXQAtDqDaaI9MUWgufjpVMdwy4sK7Yw3r7chb4Z2OyizoHAxa5p+kNM4zGZqPMszMtc4/aRh3m2uzEpucHuc2KOZ4pIFw/Feq3KtlbVLO+cmd7P7yWcpZeBkQuOCVwD+R7MoWiWKS8OAzFvPFqP9k3ghi/k5lf46xmF8ZBXo9rf38DQkhCEevvT9m+vDb6JtcGExRXaYEzFMIFoa7ht4b78jn9xx9igx3JQQ+s3hoKLqZ+FuhczgG3cowOWadiHkUHK3KPCbRertzfDHWN7t99s9/+uwJWrgnX9hvvTE6YW3Xsm07oN5gUk4RBmebIbc+4ysHPUF4v8tr04bli/0R3zvyESm4wXhRDwV2fIItOsFdj9/R6WZm30yLZouHaTSzBBisg+4s6coL7iFI5EqzaYIjIIa2J+ThseXbMSuEJE3k2GEemizsUi8h6xo86Yo7XEhJR7ATOpF8AOp/hqMWNZDbwQbXxdZNofm0xQ4LbzgOA9K0sf/985g65JcMh1wNNZM+Y2e/0yCu8CE0VkZTMtFD6sZ/MIR0ZNR3TZ4tqa6y7IzE74mzlnZz9uIHc8eOBtDgYOYgtfL4xNXIYZsApsYR0KnCsioe6eb9fd2W1u8xKoNkUcQ+WbdTX3Ygt1WFigN/b7l2LX4D7st+2IEU76un/buvdFp3HDPb41HB5Z7gHWAv48kaCqnhVNgjnyq3PHffkd624r3/X/GvouLQ2lIwcKVmZJiKBq4L+7y3ZgKf5KzIFcDqyonDQ6DSNtJWy1CalqULXu5e377rnhzQ/HYM7LFsxwvdVcLUphuBr6BKxPeVnUy51oZsWoFJqOVmswRWQ4ZlieUZuXmBCqWub6CXvQCL3RqKgzB4tSLxETG1+J1TojVXXGAfMqJ40+E/huIKQXCkhpVc3OJ0p3P3nX0g2LQvBapHiA61Ucghl/wTzbbViEug047Zmte4M7a2p/2DUr4/scWauqw9JCX032ezUVqrpbRHZiDkT0zd0UdHb/xpP4Wjqj8uBZ52dkpSdMhYpU5Ijcg02JjxltqapWq76zORh4BTOM4citDbYwtXHv9WPRZFZPn//UWtSfmSATqKqEoPaluqqfPlZbuQ0zgLdiRmo99vuchUWIgi2+G7EIdDv1hhB3XOFaW447nkwsrVgW8Qjr8ta8H6jt2isj7RM0fD9nAF+4L7/jy7eV70qkx9oS0RlzchqC9+De/T/DeAKR9cUrXtq278oJhW08XwIFHVVlxf6K0l+vLH1j5ubdqzFFob3HSLUpjHOw6+Kw6N+tN/7mZLuncHRolQZTRM7APPenG1lUX4ml1jY05XPdZ4Wjzu4cHnWuwKKFPZWTRl+NjeXJ8rsRHD1zMrt9uV/Xz1zfvWP37tkZ97u0axG2kA7BotFwT9YaLFoaiDXIfwC80ueZhcGqyWOWAT/BDHcdtij/D/h+1oy5x7KvNBKLgEtF5MNmiDK7UW/wj4CafurLW4LBd7r5fGfESqWFVEMKpT6Re6pCoalpIgP8FrlGoyrH876sqnE1Rt3vkoH9NmOLPL+mIcNJQKgREZbW1Wx9tKYyLEMYwqK/tthvuIX6SCcNiy6HYDJum7HIZQd2DVRgv31YVSrg9hdmfYdZmMNwjfDP1Fb1npCWtTRH5NRY7OAo5GDRV2szmGk0POScA8Hgvm11gS9g57sCO3d1QKB/ftZgXwN1S4Xyjw5UfXvm5t3VOIJQvGxSc0BEhmJG/akYma9CUvXLFoVWZTDdYnYOpvTyjKpWNXIX64BzpH7aQ5PgvM1NwCbnBQ7ENEQH3jOy93xV/ZnEIJ/4PS+jKCt9wqs79n0fS711xAzFa8AqdXP7HNHncuz3eTYy3Zw1Y+4zwDNVk8d0xha/rVkz5jb2PBwVHHtvB/HnUzYGPTCjEDelrqpru/j8f/xHu44/ycY7JT1CsD2gWl2hodC3y/bMXBGoG9lWvPn/bd9pX4H4Tg+q+gREoLpKVZ6oqrj7bwf3Rw+mjkYGJsHWHZgzwp++QOAzid4QUK3ZHgp+hF0THkYw2YsZvjDZqxsWkW+iXq+4LcYIHo4tzttxgvocrmscqW0cfoTceROg3Q8q973y/7IKenb2fJ0bIP+AOWmtDVuxKDyu46KqgTZ+/1PAT7F653uYk+wH0jpnpk/BHI248ES4omv79ZhD/j4wTkQea8Ja0yBEpAfGBn8qTh94ymC2MLQag+mM5VgsbfZMU4QGXLSyFovOGlo4k91nhYs4ewNPTuzS7ocKmfGWLBHJGZKf83Xgc9gIrm0RrQ0edkOPwG725fFSQVkz5jbn2KimYBFwuYisaGqU6aLFLsDmhvaxPRR88/rd29ffnd/uv+MysyYCPQ+GQrXPV1d+9EjlwUd2hoIXAPfs09Dvrti17fa5hUV9Xq2p+llbz6s8Mz3zkat3bdtVg076exydWXd9DcKmtazG2lkGfrdi3/hf5rTd1Q6vSzyWrgehF+uq5mKR3yNYurQdRvDpg6ViQ1gf6wHMQVqtJqC/wH1+W+wa6oOlh9cB6zTO8GNX+00D/B6sGpuWedm2UHBBZ893JQ1MuuA4DkluLhQtWRkoHTnwz8D/EaetJAihR/aUPaY2oPxJjHHaEZirqtVVk8fMwPSNExGkJMPnvYc5OoVYpDqO5AZXJw2xYQXjgRdV9UCczQpJQFJM4fijVfRhOkMSZsi9eDRpQLF5jhcBDzdXXUJETgMKVfX5qsljtlFfl4sJx9rNzpox99BgYdeLOA7zouckU5c90RCRC7Fexvcb3Dj2+3tjRmSlqiYc9CsiU4DzgH+r6jvuuVxM97MCuAmLzl7EovLtIvJNzOl4yV1Dn8WuoX+oiZSH990RW0iDWNq0Jxb51gA5Z/nTM27PzPulz2asHpbqDanWeCI33X5g9wvYKLK1WOT/AUYOq3HGOA8zoKdiTelVWLS5HWNP78aIPGWYU9gHM6B+zHiujcUCvy+/42kh1aeCUOg3Q+k1IKygwIu3le+6NNH5bokoHTkwC5iHOTbRxJ3KPYHA70Z+sHYJFtnPxVKxYSf75cpJo8Nlj7ax9h9UrfaJ/DZrxtzvO9bqJ4DHsPVilap+0Bzfw2WfrgEWquqaONv4MJLTf5uDXJdC86AhT/SEwxFpLsGO9YWjvXhcT2UNyREIGoSLDIZiNyg00Cfm3hP5t09EzsRSsB+o6rOtwVg6LMImRySaaZkI3XD9l4k2cn225wE/BwY5mj9q2pulwLlYVPghZqwmOiGLMFkGF8XPwup+Y91+M0VkDHZ97cQW2HOxCHExFsEdXBioXVmHDheRGapaE1CtC6kGdgQDpY/XVv7itvJdTzoD/B5mMF/AFumbRGQ0UKCq5aq6TlUfA+7CDLtSP1rqFHccn8Ycp0wshfuu2+4CEfmEiIxyTh/35XfsC7zuiRSliaS5a6mh66/KncdWh6IlK6swx+YXwN6gaiBk/cBLgJtHLF/zfWwEXhlwA9BDVV/DOAHXZM+c1xYzfvsjHSaAQEirPyyv3Nz7mYX/BXAZrNVYrflVbApOXBm9ZBGxnq2MZywdOgBlKWPZstAiIszgtJIzge9jChdhj/rXX7j/6Qf++fq7F2KLyuvJtIMkA4mSFTuK/QhwNeZ9rgDYf8N5M/wi1ydqsgc+zJoxd7BrQRmLLdBvNjdd/XhARCZgzdpLmvDeT2B9hrPi9dC6yPCHwCJVfcpF8+1U9RWxVo/fYgbnPxg1v+OY9Mw9n8jOvaSN5xuW73mb8z3vb8DDY3aUVompFQ3Faq+dMAMimEP2PrZI9sOiwADGcj00D3RsembRlmDwO7XowtJQMBNLvf5JVQ+633Ocqj7ijj0bq/MOwmrVy1T1kGSbyyqch13z81yfazr16dwOWDq3AEvlhmt4bYADv8lp+8k24l0UHfWGESmyoKrq+olLbivf9YuGf52WjdKRA72JqzZ8dm8gmLO1tu630a+LKeSMx2rJ87BzOgF4v3LS6O3rD1Z/vzAzbVK23yfAygN1gT90e2pB+4BqPvCYqm50jtm1WOmkN1YueUKbKNrh1osJWOfKaw1sOxzIU9U3m/JZKRwbnHCDGZxWcgvwd8yjPmRkVLVyW9mBtacW/+Urew5WzmlOWrdblG7G0rJN1mUUkWFYZPCsW5DS7+jb5Wu/HtG7JAEbr6IqGPxS+8ffXoP1Ab6pqq126oDY7MursHOZdF3ZEZuuwYzFtHiLkIhMxCKu77tUth9rwH8DuBFLdW4EpgEji/Pb/ub8jKyxLjcZrtEfxAzj+LE7t1QC38Mi0bewFN0STPJPRWQAFsWEgKWquijqeDpj9edS6lV8ylT1dff6JOw33RrxHh9mhIdh0eJyrIYZdK/3w4hGm4EF0deke39bzHh2ANqnQa8/57a/xxfHWIah9iHVCvPSRH58W/mueYm2b00QkVuw3/F+Va2J8bofGyjeDxPB2IXVNcuw32FnZJrVpeYnY5mGZ1V1qys7bFfV5e7vSlVtkviDyyR1wfrGExpdsfFe6xuIQlM4zjihKdngtJKewD8wr/mwYxGR7MKC3P47/vSdsc3dA+UW9g2YSECT4Bb8U7F6o7qbc+Lf1mxb9ezWPY+GjFUXfdwVZbWB5zo+/nYdZihmtmZjCYdmX5aSeHZfLHTDDFlZAmPZBjPG94ezCy5F9Q6W1mwD/Mrtp/OcTt36T8jIOtcv4vcOb+LPVdUOdapvtRHv05iR24nVup5S1Q3uN+yPRSUe8E60sXRIwyK9fIzp/AHQ3UWLYO1FgyPfoKpBVV2pqjOBtzEn62YROUNsEPhqYIbb72QRGSIRGQr3/t2q+pGqvqmqT9+b226aVz/wPC5q4eDnD+655o6De+44mYylgw/THo7XdxtQ1QVYL+VZmFMSToVfiUXtkdvvwhyxACYB2QlLiw910eFc4BQxnehGwV1bfYCXkoxQUwzZFogTXcP8IgnkxnyelwF8PTit5FiwecM9mU3FWGCJqu53i9tFGBGh4BNvr7zTsyHOz2OLc01Q9Z2HN+78ZdFT858MwRuq+kYsr7iVYhG2qDTUAxiJIiyVmqh39FPY4OuPwk+4hetMLJ36lJpjss5n0fpPvDiSZ+592d/Lb5sHlGBGN8xKDkd5F7rNZ6tqPOm/dHfcuVgkEq5dhls1VgNFEntqCKq6RVVfwAaYZ2IGcjyWfnvbPd8LuNZFszHxx6oDSdUnqq3pvRxzLk42+ElgMMNQ1R0YeacCS7Fuw667cSJSFLXtcswBLMdqjeHfuKe7X2e79yU9mFtEumDG+oVkMlqOzIbGZ8+mcIJwottKLsEWoETIwBiL65rzgx2LUkSk0N1QSUNEBmKRxnK3EI/H6OuCadruxNiPl7vt+2D9o2uxyOWkKuQ7p2ETZnxiRWWHwZ2zrtg5ile7PBXzyL8d9dIVWOvH3cCpIrIUWH96esYUVe2WiPOSJpJ2dkbmWWpqRQuw32SkIy2diy2Oz+vhWp5H7AaLUAKYwQ2LxQ8Vka4ujbcOc8biCiS4yHyeiLyD1Tgnish+LKJ5DquZTRCRrVia9lB92y3WU9cGA8v7+vwj4tXLA6p1K4N1T7vjbZPgO7VWJIwwI+HuufkisgFL5Qew2uZ4EVmmhzO938AmDW3EhEOWYb2yG1R1m5gudVKtJmIqXhcSpe7VADpjGZAUWhhOdISZTKpVktyuKWh0lCkmVHAWFiWGMNJGb+w4n9OIvjkRyRGRSzDJu5dU9e2TzVhGYDEwRJLQXMXqcJVYWvMIhqzbxxRs9makoRiPkSb+7GpPW4CRqrqvjXg+klCCqQqFOoCJIWApWT/wFWwBfbIBYwnm4HlY5sAHBN118A5wtnMGVmBs3gYZ06pa4whTD2HX42nYgp6FMT4rgBtEZJiI5IvIeVj7SofnayvvC0F1rJJFUDVYg+5+rKbiafcdCxo6ltYEVwIJYun4nAY2PwRV3Y6Ru7Zh9+4ioI+ITHD7xEWSr2DtRSuxckM7l6IFYy5nian0JDrGDIzI+G4k2SsJpCaUtFCcaIP5LJbuiIvqukCg45d+li1Nb11IhFVAr0amEkdj7R97xST6hlNPEtgNFkGJCcNfjxmExzROA/rJArVWmI00oKTi0A2LLvOIrfBzAxZ5HmIIOsLENcB9ztiBNXUPFpG8NYG6d9Wiv0THGNgWCm51+wJLvV2C1bJWu8W0IYQNZjVmiMIO0DrMsevtroMqTC0oKahqSFXXqOoTwOtYlDHJfdY7WLbiZ5izEQK2Lw3WLfxb9YHfVaC7Q6qVIdXaoGpd0L7n9r9WHfj0Hg1tdcfcJtljaSUIO0gHSSLCjEInLDp8FRMJ2Y+d52scNwF3vy7FfsMVGOHqNPdayL33NInTahJRptmoqh828vhS9csWihNtMP9KAuKCqlbuKq/4476K6m4YSWJ0vAu0KXD1ry1Y6q9BuNRqPjY7cyhmPKswTds9bpsCLG04AFMkWqTN1A7TChCOMhsanVSERZh7o8+NWM/laOA/4chJRIZgrOZHVfWQFJ+avOEyYNS6YGDdkrraNcEE5zoA8kJ15cNAXxG5HjNC6zAiSOdENcMIpGGLdbX7N+CORTHVnjPdYrkCS7U2Gqq6Xa3laS6Wzfg61nr0P+AyTE7tZaDbe4FavnVw36B5dTWfWxsM/HlFoHb6/2oqXv1nzYEXPgzWrcIctnwgKAlmhbZChJ2VChphMF06OxtrhdoGPIr9lp2wc3x1RF1zqXstA2NUXybWdx12EBdg/bGxSltjMEd6QWO+lNtXWxLX9lM4QTihBtM3tXgr8Els8YxOVVaIyCvd2xf8QFVfwi7sKkz0+2oR6ScNUOqTRFJpWWcEzsXqG32xVEs51pe1T0Q8ERmB9WVuwAgpx3rUVouCIymsx6LumHALQkfMUdod9ZoPa9x/KRztiUgvjPzzsqrGYnkudZ/31Z+X71sfsn0eMbM0oFrzZk31hw9XHuyDpdo+i6XyfoktUMuA85PINqRTbzDDacHw99+KRSuDsXp15zCBozEQkW4icgVWY30V+BoWTX8Ca0t4EXMgrgOmVWtoz4daV3l2dlbPa/LyPnlXm3YT/tuu8FOzO3Z96vkOXc7EehDLOLmizLCz0tgIswvWJqJwiEn7Jkbm6YQZ4AkiMtJt8zp2v2/B2oFuj0jdfoSd18O0eUVkJJYJeK0JDP+OmCPZnAPaU2gmnOgIE9/U4icx1uMD1A/SXQTcBlzrm1ocBIsmHM3/IawG0Q/4pIicHU6jNBGlWD2ifQPbhdVksrCFqgyLeMrce6/BIqcnVHVZE26UkwWLsfpdvCizMyYBF8uLnoAxR58FEJGumGF7hxgEC/e7X4m1B6XvCAV//aPyvbcCM4KqtXXGSKwAtlZo6Ds/KN/7B2xBughTf0lzfy/CjOgWzEglQlgEPTzQOtrRW4C1G3nY9ZJUjdyl8XuJyLVYbW0V1tv6AWYQBmPn61eYsTgXcw7OvD03//SfFrS/r63nXeWJZGSI+P0iPp/IsBzPe+hH+W3Pwwz7yVTHDDsrFUB2MvVihy7EGCXnnJ1HMbKNDzhDrO8yiDkt47BZmu0xpz28doZbTXrAIQdvCDHm3SaJVDq2BeNEs2QB8E0tXoFFFp9uaFuXwtsAbHAL5iCs9rAbk0bb2JgUqOu/+whb2GKqariboRPGqpuKLVyPAJWuHjYImK8mpv2xhprizVqsNhQrHVWEOSl9McEA4LCey7+qap1YE/lnMaPzeORvKvUi9RdgDsw/MCZ17Zya6s5jdpTe0s3vX3BWembWN/PaPAN8dMWubSG132oyVjddiUWVE7GUfHgE10gROUVVN8T5iumY0ayhvo4W+f33ishm9/0/xATqF8e7Jt136YulWeswZu3GiHT0QCyC2Y/1cC7GjPxTbv8jR6dn3uWHfInNls0el5E15fS0yjcW1dU0NGS9NcEPBFQ1KCLVWJo1mQlEXYCYusXOwM0TkfUY830QFinOwqLLszHh/F5YKvZVNa3g2VhU+gaWip2lTZ+GVIhd8ym0QJzwCPNooKbPuQCr7azCFtFwQ3jSzDls2GzfWLUIl6Ibgy2un8YW2wexdN71mNf+aMpYHoYlwECJ3avWDfPic7EoPYwpmHTcB854fhqLRB+KZBY7Q3o9ZjTKMTH2xViNqW8mkn1/+8JLx2dkDQ+q7hizo/TDMTtKQ67+fDMQFg/wYQICz2HG6GyMnTofGJOg3heOnOsAXxzW87tYRFjj9t0zegMR8bs6+E04JRpVfULrRRT8jhU8DFvgC9xx34qVJv6tqrN/VtDusd7+tN6+xFKMOjUn7zJOrggz0llJqo7psh65NKBd7BitM7HruDtWEtiNG6d2WZd22bPPH377h5ed8XzV5DEllZNG52BC+l/BhEwS7r8BpCLMFowWEWEeLVy+fw2wxpGCBmFU/G0Y+WJLohSpi4p2Yp5jtHc3Clu4r6XeWI7EFtt5CSKRjy3c+VyDRVnzw887A5qHsUn3aP1Ys9OwKOsuV/O7Fatx/lddo7djSZ+BGZA0LC0/x7UAMKdTt12La6vPHJqWcbsP+HROnj8NuWVuYdFXnquqKMHSvS9i0cIALIW+BzMiWzDW7kRscVyGCVPE6rPLxwx1OnHaWNz3X+mO90PMeK533yMdS9kNxRbGV6IZ1I44dhF2vT2JkcgWYmnBPsDPwt97dEZWz5Cdo7i1V08ko4vPN5CTq4YZmQ5PtrWkMyaH12AGSk0NbK6LNq8EPpfr9156efzwHw8pyDnPE/BE0kKqEwTuXHTJaQvOe2XJU9XBUKNr1mG4jFnwKKLTVoPgtJIBwDcwEltYRek3vqnFzTJ28VjhpDCYkVAbtvymiCzEFpezgHQR+RD4SOMobWT4vJXfPHvw9YHiKQUYK+7dM/753AJsIe+BMehewpiVpZis3cmi1HMssARzWpZG9FJ2wwYBt8fVL50RvQl4AovapmBRwD8cExExKbIx1EcV89SJ3Ueg5NS0jM+EI0Mfh0THT7soM3vmlmDgK9MrDjzntl0pIi9jN+tuzHANwIgf4zHCzlkicjAG0SgfuxbSObJ+Gf39b8RSee0cA7cnlvrfiLUhHUEKczWwMVjv3goXhQawe/VS4I/AAREpBDrenpM39BPZeRkNMZVqzanMERHfSUIoOcRQJnniTxfs+ksaqloqIv8Gxt8/asDvBhdkD/V79S1uToLR3z8va9SWq0atbf/E23tEZKtGDH1vBD4W0WWEfng69TZoMnB1cFpJiW9qcYsdDnDCxdePB8QajgdjUeEmYEVkz12geEpXVZ0VCOlAvydpIuKp6oHaYMj3tRffeebf761ZjEU0bbFhtI1pQv7YQkTOxcrEb7v/j8MMVGdsaPQqEbkZi+x/g/Ud9sZaSjY7Y3oOpgpUg3mir0QvRnMLi3pgafWYRCOX4nx3zI7SaDbjeOB8LOrchhnLIrefWVi9+jlMKq/Cvef7WNToB9JV9YEE33+4+26dsNTei8D7amPJorf1MOeuN8YI3uWi7euxiPdrWH2zlHqjvStPJOvxDl2ezkjcynPgicqD0+49uP8drNWp1bO3RaQvJlf3qtgQhDxtQBRdRK7DUt+NNkpVk8e0C6lu9RILc1R/4Z3V50/bsKM7Rv5rlEiJ2Ci4/aq6rLHH1xIQnFaShmWQDvimFsckPAWnlQzHSgvxSh4VwHW+qcUvHZujPDq06hpmslDVnWrTJB7CIpuxIjJJRIb8/Yqz87GIdEiaz8sIEydEJC/D78v+w8Qzr//0iD6ZWC3q0ZSxbBSWAP0j6oHdsPRnR2CXiJyCsT2nY2nHvhgzdLPY1JBJ1LMhd2Dkn1ie++dIMIfUMSiHzi0s6hv10hzqRQEysfTnasxAnwbcj0WEk0TkVNf2koulchNGmK400AkTRtiDRZXz4xjLbPf922FtS+3F5nR+y52Tb2GR0Uvu9f9iou9dDqgWvlRduSwQJ9vhShEH76s48KJ7qk28Y25liEzJNljDdKnwApre33i1J5KQ9RpS1b+e2W8k5syMasJntMoIMzitpFdwWsn9WKliK3AgOK3koeC0kljDLe7EMnjxkIMNVmiR+FgYzDDUZMiWqeoMjBHbxe959wZCoULipKf9nuf7/cQzx6rq/MZ6jB93uFRsmHnaxj1dhTFbDwC3YEZrmHs8BexwPYhDMFGBzthk+jkJzv9QEt+E4ZpU76jnQlidciVGCMrBUsMvY4Z8ILCug+dt+lF+uxsfblf47n/adrr1wXaFU0ampRcSo4YpIoVicojhdO+f3XbbIj9frG+3nTOM38EMY2f3uZ3dsWzARn59APzAnctCLH3V3+3f++2BsqcFZgZVq0MRKaOAanWdLWLn79fQDux+P1mIP5Gkn2RSsp2BXY1h0EehLUnoXm+oqO6F1eN6hltNkoGr0RfQACGppSE4rWQIlvm4BXM6M9xjErAoOK3kjKi3XEqCgRsO5wWnlSTbJnRc8bEymJFQ1a2q+sotw3qP9Hte3MkDnohkpfnHBoqnNIZ1m0I9lgD9MkX6fbpDG98/enYd2ysjrRJLf4aZsqdjdH0w4YdtmJhFR0zfdW30Th2LtKuInLYhUJcdaShioQ6y7ikvmyAi40Wkt9hw4LAo9+PuMz8FZKsNgJ4DnHFOeuYZD7YvfGJ8RuaXuvr9I/ukpXXt4vPdem+bDr/4ZUH7iRHHUyQiV2KtLpuxSHkJRjpLw0hME0TkXBG52n3WZ7AF5A2MTDZdbQTYfKydoQwrJfwTxwDH6nDzsOiqLTA7COt8Irf+4eD+P2wKBt4FVgRUF82uqXr45j07vjN255b12ELs4+SMMJMxmI2uX0ZhHVYWSITKl7bty8Wu29lYJitZdaWOwO6jMOjHHc6oPYaVCKKNYDgb82RwWolnbcbSLhgKJSNDGh7o3uJw0pF+Ggufl5TUXgC7KE569lpzY/OIAdULD1YOGZKV+YcsT/wKenFBbtqCiqo1P9qy808rqmvOwuqPnagf6jwKI968FMGkzcKihPCjLfa7ZD1RVbH6q7kFY4hTw3Sofr664n2MUJMOBERkH5aC3YEZrWuBW0Xkn8DDHTwv74f5bX+UjhzWGO9zusZnpmdM+V3bDou+UbZnO7ZALHHHnYtFGB2xhbAnRhyrwKLF97GoeA9Wk42+rs7GZmNeijXNX4KxbJ/GrsOxWLT5ElYb3Td255Y2wL4nqiq+oaZcwwVWs8ty2+zEPP82Cc5Ra0Ik6acKI/YlIjR1oZEydVGYpTbAPO4GCt7jpbt/hTlNL2LX9TgReSEJIZPWOKFkFFbzj3tSgqFQ2z++PP+7WCmmau/BqtUd8rJPk0QnElaHBWtaGlqkFT/O2JjENoLVJVJoPP5wZk7Wl3J8Xr4nku0TyfGJpI/KyRows2/3n52SnhZO4SzBFoyzsehuJVb/HC8iN2GM0wHYIrkXiypqgYWzq6u+5RP5wP3/CKhq5aLamvtrXasK8CeMzLMTS/2eh0W8Ne7fHwKn3JnXpke6iM+Lc3P7RdJ6+NJKMALDJixNeitWj+xD/azMP2Np3kWYwTvHfYdnoo2liHTDosnJ2DW3AVOgeQszsqOBV1V1oXMm2rrtumHXaeS0lTWYYempJltYh0WuJwMOyRI6Y1RBnNYSl+5sx1EYpOyZ8wp++eHml+pCoZh1zNpQqO7nKzYtnLNr/+lYSvZizMnJwK6xhtAaJ5ScQQPpVU8k8/ozhuRjGZdHlmza9qdAKBTzPnWowOQqWyRSBhN+jy2+8RAEZvpLpjc4+DWFw1E6cuAZwG2x0lI+EV+25+X/p1e3EZgU3jnusR9jrl6KRQU7sUjqJcwgDsFu0nnY+K/39oWCFdgCtRT7LcNprWqgRkR++a2y3V/D6tajMELPGlV9GDNmL2AR226338HATQP96Zf5GhCSb+d5+X39acOxqG+HO6YHVfUlVV2iqqWulWk+1h98LbBIVd+KTr85Y/llrB/0Q6BYVedTL8eYjhHPIqXdwgazp/vekWnHNVjU3dOR2bYBedKwOH5rQLQsYaK0bCFWv2xS1OIYuV/98QebXqkKhm7BEVuw+vABYPvSsoo7f7Zi8xOYw3ct9vtNxEQs4k41cfsXWifhp44EwzMARCTYvX3BHkBFZMLl90yvrKyte4DY2boKLKMyrfkPtXnwsU/JYhPul2H6n9ELSQi7Ie4+3gd1kuDrJCDj+EW8UzLSL8nx5DcVIV2OGZXwUOkajKI+ADOkQayONNv9nQ70dsxVH+DzwWf/L6/N6aenZ1yehrTZFwqun1Z54Pk5NdX7ELnYbVeFKetMdGIV4QyDL+JRClxag4bnH8aFT6T6vnad/jl255Ygtli2FZH5LqIDDgnOD8VqmR8S5ZU7cshITES+PRaV/gibMBJ+/i1VXRPjENpiddLBwIeRRkFVK0VkC5Y264KlgPthadlkRpm1ZETLEiYymDH1YxuCM2RnYcIFHwCPFT7xdm3V5DGPYr91F8zIvTXmlSUhbKrOWdj5vRozlmMxR26CiMRrNSkAaiP6lVsLXqHhoKvusXc+eA8b2bc+pPp4QVbmzI+27V5cWJD73TbZmeEJQVuBXwD/aKnpWEgZTPwl0wOB4ikXYcSKa4E6VZWgaron8qEncqO/ZPqGE3uUrRan0kDKJqjqnZqdtWnewcq9WAQ2DFtwOmEL4HaMRHMQS6sVYAtl+BEI/x2E4K8OlL2PpT6D8bbDVHPSMCWiLu7/H4Vfd32bo3YGg9MLPV+ul0B2Lqia/rWy3X7MmG/CjNt1YiniJVia8CLMWP0O6+0cIaZf3Mcdg2KG+0x3DPdiztv57mMej9OOIu5c+bC0cCyDuhqrn/bEHBGPk8NgNibC7IJdE0nDtaFMwNKOC4Dnw8Yua8bcEJYiPwxqso6ZGON5E/Z77sCu6d1YdiOWXnVrjC7xTS1eW/Gvuxek+Xzn+TzvCFuiqnXlVTUbbvzzI52AN1S1NPzaEFPCujRw/4/XY9fkQd/U4hYvCvCxN5gA/pLpFcDNgeIphZgnmPadVxZl/n7Bytma0ohtEkpHDjydJAgm6SLBL3Zq9995BysPYAtNHywaeAJYd4xbeUqdqMW5WMvHW2GZOlVdMCUn78+D09J/48XxooOqoQ/qapcvras9C4ss1mGp3VXu/1/CDPOssDKRiCzq5Plu/Xxu/jV9/Wn5+eKtyfG8f168a+s57vuXYOftPCwyeT8BYSSP+lmOPg6vX4axATv+vtQLLpwMrSWRpB+wdN4R9VkX3XegEQbJSdRdijkZ87GacVLsVVVdJCZu0AErNUzACD1bMIWmzaoa/Tu1SoMpIt2HdOv0yMIf3dEtpNo9zec7lE0KqVZW1NQe/ORfZ96NqVrVRLwvE3Pi3vRNLW5VamkfC6WfpsDVLfqp6vMn+lhaE0pHDuyELRRDsNpbwn6qmlBoTd9lq7+BRY+rgJWqWnasjzMSLlLrhxm5Uqzvs1JE5F9tO77Sy582Jk3q5dDAjGUdWv6Vfbt//FGgbgCWUtqMRYblmGFqh9UX92IRTuGP89veeV5G1mSBoN+imEBINfhRoG7/j8v3fnlLMLiH+lmKCXvyxIZtD3afk6eqf4uz3YVY5PtfbGzeclWd1ZRz1VIgIhOxFPRG9/8ewNDo7yU2Iu5MVX0qyf12xerhuVipZk4SDNfofQhGHsvAIvzLMUewHMsCzIxMv4rIJExNqtX0YIpIfyxifmlA5w4d7772/E/fOGrYuEAw2H1vRVXti8vWvPiP2e/c+9bqTR/EeO9woJ0Tk2lVSBnMOHDMuk9i0zJalRd0olA6cmAGFhX1wiKrhAio1j62r/yXd27e/h8aOZbtWMCl4U7F6qZLgOUj09LlqsycmaMzMy/xI55CyIP0dYG6lf+qKL/7rZrqJ5yE3cWY0d2HpfEEM6CbsDrj4G/kFmRek5VzvcSY4hJQDewNBVfesGfHFzBFoAYja1ffzMbaTl6MJw3nFJUmYYSKwUCWqv6zMeempcGJW7wXVt5ypJoJro81crszAE9VFyaxz8FYbdLD6sJvN9ZYRuzLw66JWqyN6AqsTp3fLS9r9rqvXpfhiXxBVTtsOVBZXZibdVea5z3pL5ne4sVR3HU3GJOPLMcY7LMxfsBVmODHz2K0S4XffyPwelMkCk80UizZOFCbjbcF059NITlcj8nKJTSWQdVASLWmOhT68f9t2na3qq4/0cYSTA1IbVzcU9j3mLSkrrbrjw/su+myXdt+/aP9e//7bm31nPJQaH9vf9rgnxe0f2huYdGjczp1G6Cqj2MGaTjmNPwbEx6YAIzwQ/nEzOxrYxlLAL+Iv4Pn6zOnU7eaRqSh22H3cAaWDo6HTRiJaqD7u7MkHgfWGpAs6adBwo9TXRqDCWgEgSWOxdzkaMJdz6+4YxqIzc+dPbhDQXDB7Zf9PaT6J+B0EelZlJ8zIM3z/gPMbckCKU584Fwsvf+UywQNwJjt7TCi01JgbQJj2RXjCbQ6Ywkpg9kQ1hElp5ZCQtxBA4orqqoe/N0TGTxw2eqfHqfjahRUdb+qvoCJRJ8LXFDo8/3rU7n5F5+ennlhW5+vvU/Ec0Lc16rqnN+17fhdbGH8N0bi+RRWl/os8I2v5hYs8xujNy48i3BvbcShtsXqndUk6DF0i/cS7FquwByavEZ8TkvEYaQfJ30YzhLg/vZhwhFxCU6unna5206xqPXd5jhA5/i8gNUwh1w/qMezcz898fz22RmZfs+LZuTnYhHov5rjs5sb7lxOwFjcT6tqhXtuFNZbPMA9/z4mChJPPW0QVktvlUgZzMTYBBSeJH1rxwMNtmGISKWI3FO0ZGWiiKhFwJEzHgW2fSW34J5TfP4u6UcOGfdEJHtkWvqPzknPCEcTrwPfxdJVVwOde/nTPC/xODCwqKkwmWNzdbICLP29IokIfZXbfyb1TNnWjGjSDxwZZXYE9rls0RFwadxrqdc3XqSqS5vzIJ0hnwX0vaRP1xvzM9K6+D0v3rqbCVzjyIctBs4JuRQrM8wKOyfAhVhqdg31ESfYdX8EscwZ0e4cOXO41SBlMBPA3WilpNKyyWJDEtv4afrEiOMOVQ3O6dRt+TnpmRf4Eo92ki/mFozGIrk8zPMuwJiWX3ik8uAQGmClh1Tr9gaD2xqQDQsjH6uP9cRqZA1hB5Y6644tfG2TeE9LRnRbCRxpMLsSJx3r6rpXYFKGXYAFqnpMIh9VrQJmndImd5KqxtWtdqjDIrkWASc6ciVWXnhFVYMiki4iE7Dzd5+qvhvlsJVj12c0+gMbIgxuq0PKYDaMVFo2efyRxKpJIeCZoiUrE23TEtG9IRFtn4i/necbjUXZ1Zi03wvYnM9vzqutfqSy4aHC+usDZSuAT4jI6Y5MFA9tsSjLIwl5R1ePW4Cxl/dihrM145A0XgSix3zFrF+KyGlY284iLCMwJ44oRLNBVQ8M6dhme0O1Y1UVkiDMHQ+ISAGWIVmnqvNcf3JXTISgG/Ccqq6M8dYjDKZzAgdhZKpWi5TBbBibgE6ptGxSeAFTqamK8ZpixvR7x/WImgdJkT98FvGEhRY2qWqZqoZUNaCqC3eHgrcH4zCug6o1G4OBZ96srf4nJgOYCVwvIpeJTVf5/+ydd5Rb5dHGf3Ol7Wvvuqx77703XLCpNh0MmBIch5JOCKGEfEmWJJgUICSEhIQUCMaUYMB008EFFzDYxr33XtZ1u6T5/phXu1qtpF13G/Y5R8de6erq6ured2aemXkmOv9ZB6McNznpvepgBVYgVICp/5zOSEjJOsPUgAiDKTbh5lysB3AuVuTzQbg15VhDRNJEpK2InCki105asj5YGgzFujfKEFRN/t/idYetSnSs4fqTL8FyuvNFxCciZ2DC8rMw53dunLfHijCbAIFwn/PpihqDWQVc4r6Glq0Gmi1YHsRaHCaranGpUVH52AK9DBjabMHy0zF/EVYaiougaumC0uItWK7nauBGEblcRIaISEcRqTsub+d7PpGRpaqbi1UDpTaf9WBAtXh/KPTIjXk7/4OpAu1VmzjyLJZ77AJ8Q2w0WFiTtA62CFU756YW4W7FqOImh3cKTjnEijAPUS7AngMciCgGysRaHoLAYowyf0dVj2bkVwWISIqItHK/09VYu0U7LKJ/7+zWje5I8nlxnZuQqh4oLt019tWZzd0+qpobeVwgIs0xHdzpqrpcROpjWsYZWE4/C9iuqnvi7GI/lQ3maV3sE0aN0k/1sAZbtGLRDzWIQLMFywuBG66rl/23s2tnXHJBVq01wIJmC5bPO9nHdqQYtmNzaEbDZn/EppjEpGY9CCaJfAeL4NpiRTWKad42xSTwMs/cuSXPgx+fmZJ6ebeklECxat4rhYdm7w6FDmJtCGdjOrfvuRz6amC1U5/pCFwgIgXuM+pSvfxlJGZjczVFRJJPx3ySix41RqFTZA6zjI4VkYaYI7IQa68ZhNGJVVHkVR1HkvucJu6RheWKt2CFX7ujW1NW3Hr5N1tkZbzkE0mOnIKjqghI7ZSkhit/eNkdP3pn7rPvrtnaWEQ+PJFCHhGCBO8CO6Vcy3i2qq5y37kHJk4SDxWKflyxTzNsCtFpjRqDWT1swubapR4G/fW1xv/y9vv+l7f/f6q66GQfyzHCn7BZmmcTMUZKTey85JXC/CceObT/gNokkYXOwLXBDFsa5VqzwRCcP7W4aOfU4qKNmFHt67ZTLK/WA7hQRN4OGzRVPQDMFZHPMUrxciyK6iYiy1W1utqwSzBmKRMz6qcjRRYruoTKBnOZiHTEDMBUbBHvi41V23+4H+pk9hpSbiDrYedvK0ZT7kxUreyqTdN/NqTbrbf0bveDFlkZPbEqa8K20y/ib5md2WnymOE/v/yFqQ++v3ZbfRGZFidXeEwRIUjwBka5hiPySC3jrsAWVY077lBVC11va4oTfekIrDsdnbNo1FCy1YCjZTdhJfw1qB5yOI2qYavCsB2bg1gLwneABUHV0mLVkoOqU0TkjEcO7f89cJ6INAMzcGrjvV7GvPFirKfzLMzgrQH+B/wTm885E7gR059tjxWj3CUi3USkTrhy1kUs+zGqezJG950pIteISM+qipPcwrc6W7zsGzNqDZ/RsNnpmMuMlb8ENxPTRaCNsAri3tjg7fqYMXi9usbSLfqNRKSPUxb6JqbiBJa/e1pV31TVeaq6vQpj6WFtGFv+MHPx9omL1v5UREpiFUR7Ip7f89ImXj50FFbRfKGInBvZY3osES1IgJ27yzEn762wsXSf3wOoDlt0AKjtrttOfAXoWKiRxqs2RKQ10FVVE1ERNaBscfgWMDFeD9zpDreADsGKRj50zzXC5NCmq+r6OO9rBYzFFqU5WCHOGmyM3A0YndcIo2KbU97n5r8oNT396vTMvkmQ80lxUculgZIfTS0qnOr22xBbmFpjEc8KrCCowiI+o2GzVnuCwSdqe94IgWK/LWirgJ8N27H5tNCXFZFawCWq+lz4ucIxw9KBazfkF91ePyWp4L1tewNPr9/xz3e3752EGc1mWA9h3BFabnGvj0WPTbFocj92Prdgebsjup6dQcrGjM3Zxb/4Rj9P5FYSVMQGQ6HS3KlfnvHQrCXNsBzgLkzI/Jip5Lg86VkYCzINc+oyMC3jvVHb9gGyVPXjuMc8YXwOcFtxaeCHSX5fRiikedNXrP/o7C5tfugbl7vvWB33yUKNwawmHB1zAzYgOGGl29cdrkjgLI3S9fwqQUSGAMOBHar6RMTzOVjBxCxVXRPjfd2w6s1WWOTT1j0CWP5zDzZHcSjWk7evvue1+V+9Rtcl2ef5RcRfoqGQDwkuKi154bZ9u/+BLaa7MVqyLWY8M7GioRWqun9Gw2ZtgbmqWjtGQUkB8KNhOzY/eUxO0HGEiGQD56vqJIDCMcN6YbKEyThKNhDSUp8QnLpz/98umr54JjaeqzhqP+F+1LCBbIxFqVswI7kt+j1HeLzdMRWfcI569567x/ymdkrywETvC4b04M8+nPfnRz5d9hhmyEdh1dPvYNWrR7V4u4jxfIz9WIMZyxWYgEP0cPMUrIjpVZceqHy8E8a3w3LkmUTMFg6FQsWe5+0GBvrG5W45mmM+2ajJYVYTqhoQkY04ZZWTfTynOL5SdGwc7MWMU0MR8TvaHlXdJSJvYTSaTyuPh2uBtZ4cUJtOsRv41JXxdwauw4p5lmD3Z+fH6uT82Ge5yrJoJFk8D/B6JiVf+a86OZu+s3fXR1h+Lg0zujuxNEId4DIR2ftu/ca/TBXJitMLmA48NqNhs9eG7dgcr/rxpGNzr07e31s2bvv+/vwGm3t1SqnXIScDE/7OjtzO70kSkDQsJ+tHOy4/46MGr8wqhjJj2yTiUYIZyNUYM5DQGXaOc2rEIyXq7+jnG2O/6xzM4HUF3ssvCRTXTknMsIrg9W1cd6Z734fYzN7zMc3m9iLypsbRbK0Kjrq/ALtWFJvU836C6LU7NiAhnrEULPUQ1jcug+d5KVi0/hI2DP60RY3BPDysBbpRYzCrwtfFYHpYFNgAi0gAa98QkTeBi5wxDc/CDBeNrMZyPES8ZydWlRieb5kOtLkgNb1Bjufr6osaLxaGiKR1Skr+3vQGTX81bMfmUimfxVgf+x3qA/4+SSmdky0Xl6huIYTlUf94+Kfj+GJzr06CaRX/8uKsWnUuyKolwO+K9hfOT6mdmhIrFwjg9yTFF+IP7rw2xYzDFqwAay5W1BI2ck3d+UtkAAUTpijCIrOiiMd+rEo2/HcqlrfMVdVtInI+8LmqLgrkjk1X1T6SQJyiKBAsufn12bUwBa3zMIP+sogsxcQDbheRZ+PR//HgnIYLMGetsTsfLyeQEEzFDP3kBLsdjJ3feNeXH+gZnDC+i29c7mm7ftYYzMPDJmCEiKQnyoXUgPp89Vtw9mL5p2LMCFbo51PVfSLyBuVGcyG2OO3BFtKDcfa7iPJRXLO+n1n7rz4rcomLkGrSwtKS0WeKfIrd0z7MkO8Mf97QlNSRISj1Jb7n0/eHgueKyGQs8ip2jxKgJFFRy/GEM5b/Bq7FinrCXyLVn5o0TOJZS4cUn9e1XWZq59WHinZiBrMpVsEcafyijWC08SsCirSak2SckTkXa8fY5vpnGwIfATT900trFnz34mDdtOSQL4a2bCAUKn5vzdanS0KhBRh9nwHcIiJvA58Af8aqWH8sIu9iufSyYwvkjm2MFeiUAp/6x0/Md8fVAOuVLnLHM10rD7SORg9M7SfeNQuWLqhK9k+BMzmNA44ag3kYcDqKG7EL+LT90Y8nXG4sG6ve/MpCVYtE5BBm/GKKZavqgUij6bbdhDV1xyzLVxtcvRrorqqfzmjYLIOqDCZ424KBHm6fQfcIRPy/OMvzNnmxWzEqYF0g0BjL1YeNZal7qIgEKDegxdX8fwlwOCPLYmE4zlhGv1CVsQQQKD2/Ud35q1dv3cQRGL/DhYviz8NaKVa4p3thzhAicgFw/rffnP2jiZcPfSgtiVp+z0sHCIY0AIQ8kQeufmn6W1jP6IdYFXVP7DwMBt7HKloXYb9XdxF5ovSXN6RgE0/Ocd8TICmQO/ZfPf/5xt8wSlcxZ2B6VW1yroeyM/ByxHN+7BrOCj8+uOfGTmd2aiVe4p9DqGKg/KmOGoN5+FiDeVw1BjM26gH7j9didIphC1bF2lBEJFYRhqoeChtNrF3kX1i+KJEc25eYLN6X0xs0XUk5vRcTfhG9IC3jld8d2Bt3LNWMhs2WYlFJIhxs7ff/AusFrUP5+LA6WDR9yD3CCk5FmEFMcY8s929yxHPJQIozbDGNaeT/r62blXFno3pX1vP5R4rghZQPk4S47TLBkgBekkciu+mJlP6xd5vPH1u15URVbA/Fvs9nUKbJ2gwzbjdidRD/fWvVltRmj7w07t8Xn9Gzf5N6l3oiWXsKi5f9auqXc95Zs/U/zuHahhnfRW5/izCj2Q/LK+4EJgKD22RnPlAcCF6e4vdlY2t72bCAkOr3Jl155kW9/vXmo4GQvhcjt14BzujXAkZgVH0v9z2ysEjyICbIfgDYkeTzJku5GlAizKj69J26qDGYh4/NwFk1tGxcfB3yl2HsptxrzsIWkEpwUeNUbCHtgHnncektZ2TXYfnyp4B7qziO7ZiRi4thOzYXzWjY7BFVvTOO8QkCO7I83xRHvVbQM3UVlZFGtL77fypGX+7Fvv9W9/8DkRSuYx5iGlP3SPt904bnXFsv67cCEp4ME0S7kWCdKtxbSFJ6EsQ3mMXAE2mTZpwQYykiPbB74PUIB6o35mjc6P7+O2ZQRxaUBl/6xiufZGNR4nnYdRF2yj9R1U0i8goWMTbCBBiexQqBDmGMRQeg6OnLh7TyjPqtRPF6Iqlt6tRqvurWy7e3+svkle5YBcuVZ2G/aVbEIxNjKXpg48n2YU7efuBQND0fnDB+RVFpIC/Z70v3YnsvAWCxb1zu4uqcx1MVNQbzMOFo2Q2Yl7jkZB/PKYgcjO75OmAvZizzMVp2X4JtczAFlQbYAlpVy80C4PIzd25Z+Eb9Rn/PEO9Wf+zG9ULgO8N2bK5Oi8Fv9mmod2288zxIiigAOoRR6OcM27E5Zp7SqbTsIOq3dZW72ZRHoh3c/zNF5CB2jsKPfcC+WFJvm3t1agXcR1Qk7as8f7QCAoWlFB8qISUzBfEqrtOBkAY9Ybsncl+ifRwriEhLzMC8Gi6gEZE6mHE7gEWDL7v/X4nRrH7McdiAGfc6WP5/tIjMU9WCCJaiPxbFfQS8hRnYVsDbg5rWr92vSf3HfV78oq4kn5eakeS/R0T2Yb9ReETc/ojHNvfvAUwhaZWqzqrie/uBM68/o8eDE75z5X3BUCjT53llRWrBUKjE53l57juf1qgxmEeGNVhOosZgVkYOJm79dUC4UrYQM5grEmzbAhMI2IMJHpwpJnkWz0AdEJHNwMDLdm+f/1BWvWd7J6dcC6jYQzyRncAtw3Zs/qg6B3vmzi0ZHrz4RN0Gf27rT7oZy03tw3JeLw/bsfmwew6dYdhFFKvgIsosyqPS1u7f2iKST0Ujunddjw4/8cepBHafE5d2zd9+kNK6ga3JddJrJ3uixSFNSvLEW7Dv0JLvf77qP4v35ceVcTtWcEU9wzFB97AyTn3gViyCXuZeKxSRgUCeqq4Vkc7AZlVVEdlBeYHPKsz4zgFw18mnERTtQkzv9SzggkdG9Z/vqyKBCJCe5G+GVd3uI0KcPsb3ycBSCAkdOycicT6Q99zshY/3b9Pso14tGj8wtEOLM1SpUxwIHPpk5YaP/T7v++f+4b8nfQrL0aLGYB4ZtmC0bMaR9kF9FeGijVp8xQt+IpCHFeSUEKfwB8qMR2OMTquLVTmmAeeIiWvHqz5dBfxfCJ68c/8eL0u8F39aO7tFbfEyF5WWHLoho9a/qhlZhum3ESGY/609OxbhqjWPF5zGbh5R14KLamtTTu02A7qXhPSbfl986bdEOcqAasnEldv+9ufdeW9tuHSgd9eCNWOm7ti3dW1+0etY60V3PY6axq4wZhQw07UHISJdsPxfa+A5yocvN8AM0Uvu7WEDBha9t8HqAL4ErhKRBZGFOaq60VG052LX1MdA/6smTRu29rYrfFXVQKX4fXu0erM/e2OCF4mUkZpgVPGC8PkVkcbAL1R1oYiMwaj7pUAj/QoYzBot2SOAWwzCtGwNylEP85xPSvvBiYbzzvdjeaBM18MXC42wkV1FmLHYj0UHApwvMcY4ubaEM7CFszewcL+G6v5if94LP9q3+3//yj+wtbrG0qGb+/ekRv9q80H3qeo6VZ2vqh+p6stpnlTrmglFGI+QaiCgWvrM7n2zfr5lR7tdxaXL0ibNWPDk2u3L1uYXbceKVT7CCqiyj8f3cb/dSMy4rBGRZBE5DyvKaYZJzL3rjKUfM6KzXJW1h7W4bHa724k5YPWcIx7OY1eAi2Bfx6LEK4GVmw8WrN5ysHBFIvUfZ/yeiPd6xHfKxNSiFiTYpjtmLD+MMJa13fcJt5QdwKLlpUDXWNf56YYag3nkWIt5gzUoRw5WCPN1wnbMIO7C8pOx0BwrzgCLwA84p+sDrGVjlETk6lykPgqLPGZi9P9WbGTiPszglo1PqgrOWPQGph6tnNrxgohUx5Bv/zy/8OnCUGhhQHXR4sKiD+7etP27uVt3PouxZTe5SLoIo76bYgazCLi4CtGGI8Vw4KCqfuGixyux3zgZo5wjKc1+wB5VXev+buDeG1YX2uW+R477ewHQRWLkrp3jMQebkjISKPlw3bY/BEKxq9NDqppfGvCueWl6XB3YCPQBlsVqOREbwn0Wlqt+VSvOE+3h3hemeUux/D4Y09C2Gp99SqPGYB45NgN1HNdfA8PXqUI2jM0YHbuD+LRspMGsjVP5cZH4R9iicqGLTsI9fHsxJZoOWAXsGRH7yMdaNapMqYSpWEwfNKas2SmCP5JgSHdJKBT4+MCh965cs+nzDotWndF64cqeF63a+PxLew+8j7Xp/AbL/30Ho8jzgKYuqnoDm8TR51gesJgYeW1gmou4RmG/Wzp2XcwOU5pi4vjtMAcojGaU/6bhfPBWoJmIeO732ozlmmPCqfy8CrS55Y3ZaQ/MWvxcSTAYCIbKJf6CoVDBweLSgtvf/fwnk5dv/L6YDnK871QbY84qDSaX8iHcArwWKWTgaOm2VGQwSjGN4mysHaZHvM89XVBjMI8QbrFbTw0tG4mvo8HcjRV1HMAizQpwi0wa5eelzGBC2biuadgCfxFmLANYv1oH9/8pWLP65oj3HKDyVPtY6OH2car3Db8JvI0tsBUQUi3OCwa3fX/DtiIsdxdmdrZivYgLsfvwt9hIr3Mw45vlaPKlGE04whmuo4aItMEE7qe5Y2qHsQ2ZmDh6QxylGUHFzoyK2ppRTseGsRWLTsMMwgJMlCCuc+QM1xKg2W+mLVze5e+v3/vq8o0vrdi9/7Mvtu754lBp4FvNH3n55xO+XOMH/gJcLyLXxNldb2BJdHTpcpOXA6sdjR4dyXYD1mhFLd4S7Pesq6qbbDdyOo6TK0ONwTw6rOUrQDMcCzjaKIPErRVfReRhHncxkBOD9muGq4J0f9ciqgdTDZ9gDscIjGbzYW0EszF6MaxlGkaVtKxraegJTDtVqdgwmi1YrlhD/r0h1d0loVBpSPVQUDV/aWHx6z/dtGNYfii0DasduB4Tqc/HWh9ewwxULcxo1sFmV+4EGrvv/hHmOJwrCapxqwOxiTRDgfmYJushzDj4sNxiK0zlJxwx9wN2q+q6iH2kYJFX9ODv8EDvemC6xJiz1THB8bTAFIEeAwo27M8/dO3kGU90e/yNmYOefHtS/YcmTS0MBJ9zx5UF/BroIyI/iaR7nTBBS5wiUcTz3TCnYKqaxGP05ydjUXD0a5ERJu710zrKrDGYR4ctmBcbV0D5a4T62KLwtSj4icA+zGCmYgt4najXW+BoN7ew+DXGRAxH7+3BFv8LsQVwi6ruwnJx84AeUl4GeYAEBtMZ7hGY2HciDdBTBs0WLA81W7D84V5L1gy5fu3mJ+YVFI2YejA/54JVG17/+GB+PjaqbAsWfTfDehK7YHT4HKxdpxBrk2ni/m4OZeL2n2OL9xFPzHApmPMxZqEfFgE2wajYd91mXSiPLhtRmYoF+01jDZ3egeUx60U8Nx/oGSsH6ypVR7jPDhfcTHDvL8Guv95qk3HewlgMMDEMP/Br1xIDRlkvVjfSTER8IjICi6RfU9XoaDiMcGtMNOVfiv0e4f2vBupGfN5phxqDeRSooWUr4OtIx0ZWyjbGooUyys8tcE0op91qETWlxG3XBaNf33aFHJuwaCvc59scW4BLsSgB95mJKNkemGD6qU7FVsLeYDD70/zCHVes3rhw3NrNhVilcF8syn4WW4CnUT5D9Gb31iJs8d4PPONe+1ZEdeZcLBrs5EQGDguOFr0EM7p+zAj2xSjMWW496IozHhFU7CcxCmiaU5mORVX3Y0amScRzO913ahd1PDlY5PcBdl31AD5zhus191wB1vPbyx1vHnAZpuz0R+wau09EertjWuz2nYHlK/0kmIHpzm137DeKRgl2zaaKSJIrdFvqtj8tUWMwjx41tKzha2kwHbZj3v1OKuYxG2IVseGIskL+EspyYX2AKRE9b+m43JijyZpj46jmYzkmSEDJOg++h9vH6Yj6QIGWj5tahhnCQhcpvYHlzA5hxqIxNpg5HYsqw1FbLhZp3S42MaYYo7hLgWGuUKVacJH9Ve5zP8MiuaEYTbnEbePHjMF897b+wE6NPX6rQsFPFNZR2QmfD/QOMwxSriA0zVWq9sFyiPugrPVtJUbvp2CGuw9GGTfp3CRneOCp+y4PPHWf/8FrRi4TGI+xHyUuKr4Co5UrTEGJgfZY5W+sGaqlWD52P+W07FKgtcTRBj7VUSNccPTYiqmXZEbkLL6OyMEor68jwsUn2yk3aFCxOhai8pci0hRb4KeEPXhXlNIIeAGLKMZA2biw/UA/l7PKI4bBjKBiPzuNr8dGGD0NlA1v34udv7AK0nq33Ua3rQ9bz5phecUv1TR8n8Ao1B+IyN9VdaWIdMIKsYZjBToJ4YzUWCwf/Ij73L7AG6oaqSLUBdiqqnud0WlLuUBB5P7qYJ0e++N85CYsx1imV62qW0WkGDM2uzHafraqbnCVre2ASVH78TADlYZFlOen+H2z37/nxu79Wzf9ZSikxZ4n/GTUYLl5eN/S2555K+CObSfmCMQz6JHnpScwPc4mpZho/14sVbHL9Z+udufqtFsvaiLMo0QELfu17cl0TfYpmCf5dcQmrKduP5Ac4T1HG8yyCNPRaedgU+73uOcEy699pqoBVV2OGeMWIlLfFa+Eo8x891nRTm8vbHTVaTmP1OV5M6k8/qwE+7613TbNgH9iRrQDZpj2YvKEbbCRak0wBuh1jMb9oSv4+QTLOWeLSdMlOp504NsY1fp7rPimCUZT7o3YzodF9fMjqNgZsXoZiUPHRmAHlhevF/X8PKzI6UJgvpYr9gwAFsX4LA/LsSdhGrbTXvvJDQ/0b9P0kiS/L8nzJBMT3MjISk/NfuLmK0Zd1qfTZe74qqMH3Qob3RZPwaeEigYzjEVYf+lpF7DVGMxjg6+7iEEOVvBzSldiHkfswhyGdFw/pltoa1Fe9QhuSomYkMBIjE6LrJJsiy2U0dJl7wIXiDXGr8UW+8ZYtFoWZYpIPYwyPF2pWLCFtQjL4wFlRisZ+BRzCDpiecLdmKGsBQxX1bexXNo2yiuO22Dn6kGMFvwhdt6WY5Ruf0d7V4JrgbgRo9b/glGwIeDNGIVbnbAIag9mwHao6oY43zERHQt2zXgYNR39fD9MwH6pO8aG7vhiSf/5sBymD/AHnrpv69ld2nRJ8vliKlL5fV7KpFuvrYsZut+46ykRepFADYhySraCwXSR9Q7M0TmtUGMwjw3CtGytk30gJwlf5/wllE8tyaZcwKA5tqhHVkHWxgpVLsSiyLIF1XnbAzCaTd1zSVjk+ilmBEdhdOCCK+vUvmhK+5ajF3Vt99/NvTo9sLJHh06YgZijp7e+cR1skY80SM2we2wxltvr4/6Pi6reADqIyJlYEcu/sSg1BaOuB2MR4kPYb/AjzMDUxijdsyIrUEXEE5EB2PkW4BXs3G50PYgVBnG79/bEosvG7hhjTvhwv3ND931iwuVutxORx3TXwgVY4U6kwRsEzI2TZ/QwAx8uELvFq0LtyOd5rQv/86spWAvIfSIS06i56D2JxHNdoynZSCzE+kurFIw/lXDahcSnIgJP3dd0xbbdl7RrWPex4ITx6dhN+nfgL75xuV8HIfL6VI6KvjZwObZ9GFW3BSv2yCQiinALQzYwDKuqjB7g2wMrEImMOJtgUUspsFFEPkwTGTm3a9sLMj3vCjexxA+MShX58cxOree0SEk+73h9zxOEuliEGUkvNsWcjyKXx+2kqpGU4UasB7g2Nr1jOiZK3gpzUGZjkVlT4Eksavwe1mbRwycU/L5H6+sLxwzbvWDvod3YeVfMaK/DDPRMVV0T55g7YNRnHlYYNCPcmhEDjbAimZhTQiKwFqfw44zsSKyV5RNgjDPMqZhBWhVnH2GDGW5Bau+2T4TSJL+vuao+LyJbgDtF5DlVjWYtemF54kSsUpiSPQikucKrAICqbhORUqztJZHRPaVQE2EeJYITxvcAFnVoVO8yn+dlUk6l/BRYFJwwvulJPcATgwZ8vSNMsMiyKXYe6lNZxaU2trCuV9UKJfiuhL8bFklGokIOVFW3zO3SdmiG513uE0nyynNASZ5ISvPkpAHAP47llzoJqIuJQEQbzC3u/x4QjKpw3YqxHO9iFODZmAGbji3WDTADuBwzqDMwA3vxv/u377/7isH//W67xv8OhPTFblnpn+y+4ow/39etZSf3WY2Bd+MZSxdd9qI8v7hdVTcm+H6x1H1iYS1G7Sdhue5CrD1FMRq0j/u8OQmMlocV+4QjzO3R0XE0VNWHK7hS1elY68kYEbk+okI3PDw8nqEOoxRIdizLAcorZcM47YQMagzmUSA4YbyHeam1pbJ6SCp2o75wwg/sBMLll3ynS3P8ccQWTFWmFPPqfWFq1C2qF2PRYrRRBItIl8c4hxUM5uZenepl+X3fiDNIOqzn+Y3NvTpVkug7jRDOoRVCWYtMwFXG1sXyxLOJWGgdLXvQvfc9zDh2wOjZ2pjWalssz/iOe33z73u0On9Mi5zbU3xeTpLnpfo9yfR7Xkq639fmxx2b/ja3a4t2WMN+ogKYtlgBlodFtLOr+H5VFfyEsR1jAC/BaOGPIwzjKoxiJoGYAFjuMkzJNrht4lvbSgLBhHUGefmFXspNv6ofTi+p6ipM5KA7Fm0mYw7CoqpESsLG2V3/sWjZtUAtVwB3WqDGYB4dzsOojng8vB/oE5ww/rRLbh8Gvu75yzC2Ut6D6eEiJOeVj8AcqDnRb3KLRTPKe/fCz2cDnpo0WhiXYhRjIoQwBZzTDs7gC+VDuaFiRNYNa5NYgIkPREoFbgGauEX8Q8yInZPm8xY93q/9t9ZfMuDyg1cNeW7v6MHrNl468Pa3zuy644ftm45I8ryYFGWS5yX9rHPzGwuuHhq3Ncf9tr2xfOhwElOxYSYhUlc4EfZTzlR8EGWc/JgxLI31xgh4WMR9JnD73z/8ND8Y0jlUjN7LUBIIlj457YtXgiG9BfitiIx01dl7gF9hjsYDmDOyrBrfAeIU/kBZh8FiTiMhgxqDeXQYiusNS4AQ1mv3VUWNwTRsbJbkb765V6fmmZ6XRrlhOwPLZy4ldtvNGZh8XfTiVyG6FBFvd2mgSUg17pBlhxQOY/TXKYa6WB4wlfJFvSmwxRnHNtj4qENUnhW51W0bXoi/SPKkcO75vf92XcucOxqkJrfziaSl+LyMusn+S4Y3yH7Nq6LcxPUkDk2wSWssGm4GbKuCisVtt6Wa1eT9sOKnnTEKenph4gnp7hhjHXsaFoX/ESsyek9V/5SekjSqNBicGgiGSkNuv4FQqCgYChX/d/q8t/7vxfffwNJJezC93h+JyMVAjqo+jFHdI6i+WEuiwh8wmry5nCbyojVFP0eHEOZ1xb31VDVj5fbdfbqKTMFaLxLmEE5D5FB9b/Mric29Ol22sUeH+4PQRVWvWditnW9RQdHUwZnp2zBa/nWs2KeCYyGm8pOE9Q5GPu/HjMEuV/lZH8h+fd/B2t+snx3wzGOPhwLMmJyOqIstrC2AQtfb2AiLGLtg+d9w5LkAuFxEFroCmu3AORGFJcVzz+s9sGVGah9fxUgUr5qDjFVVRKQtlvOMhd5YwUpHKs69jIdq5S9FpCdmjN/Avnfka5lYMdBLWBFPb0xYPvx6CpbDvRBzIO5xYg03ikiKqub7RX51+8gznr7pzL5nJvt9WSl+/7zzHvzvntU78j7HJBlXY8o/gzAZvXOBdiKyHbu+Hgd+IiLPq+rUKr5OvF5MwKQlRWQldr1XYmBONdQYzKPDNOAOLIKIizYN6o5rVqf2rM17D6SJSB7WT7UT8x5P5RmF1UEO8ZU+vvLY3KvTXVjPWrq7mdKTgB7pqef8p3XT3u/tP9Tr9o3bSpwaS6TKjw8r2pgFNHaFFPUw45iFtSm8glVGLgfynty9t9UN9bJ/GN89K8Orx+4bnlDUwb5vByzCbIgttAEsZxcWNw+r/WzGCZ27hTcPc1C2pnhS3Doz9fvRxjISqkqirobSkPr+tWZr75+K7MIirjz37z7M+PkwozW9qqpXR982pQqj4IQUumBOVgPgPBGRiKi0P7BUVfNFZClwrbu2ijBa+AKswOZJoGdENfZ+rNZiP9D5kXdnT37k3dnrMLnBL1ff+fBo971mYkOw16nqLBFZ4PY5GPtdwuf4FeAqMbWq5xJEzWFKdieQEVkpG4FFwJUiMq8a1cMnFTUG8+jwMRY1xDWYIkKSzyfr/3xXmv9b9z6NGZgGmAc5yCXEd2JVljuxwpBT+qIJw3m7odO87++IsblXp7bAfVheqgL8Iv5Mz6tzVd2sXwPfxaj7EhFpjhnGgVgklYYtwrsxWnEhdj3tUNWPoIwaHLmhpDR9bXHJTzqkJj/qxTYEBcAPmi1YHjNHdRqgLrAGrBfRCQdsxoppDjqhgkjMBy4WkcVuEQ7TsluvadGgtq8Kmq+qFkC/JxSH9LcYRVwXM5I9Ka94LsJaWpAIGbs4yMGMU9x7xUWzfTDJvfwRrRptbVY7vc3vz+nzvUDu2E0jn/lgnjuGF6BCdDYOo/BLMHH6+ZiRiswNhltLmgCbVPWgK+DZ515fikWu7wFtm9fN+nbxf39THHjqvu8CdYpKAzt+88pH+x/74NP5BSWlGe6zFmPRbAsR+VOc/G0pkKSqIWess7FrvQyqesg5P52IMbj6VEKNwTwK+MblanDC+B+r6mtVNOBmAteq6pOYCkmZlJQrBGiIGdG+QH0ROUi5Ad0J7D1FVXRyiLr4v2a4FYsyYsITSQqpfrNFSvJ7WC7Mw87XQcyAPk7FWZkAiGmdbnL0Wl9MJ3QesPS8lesz72xYr88tOXWuyfC8pFJVL0kkvBj9uNmC5S8fjy96vOHun7pYsU/Y4DfDqk7744QKIqGm2bodW+gXYYU/A4C5GX6vpDo3TEhVvRj3blEwFHxl8+6VuYvWN8Ao7jIRCjEt32wsHbMSM6J13W7CUWg4It3r0jAJ1X3cPgcDb6nqgUDu2Ms+GHveP4sCwTpJnpwDBN687uyklXkHHu2ak13qjN0ArBCsE6ZxOy2qMjWyUChsrDphA8nBjGrYOV+DOXGp79z1zakD2jabjeLHiSSkJvkbjr/y3MJfXjaifqd7/rJ3276DLbDpLxswnd3/iEiuVhaaD1OyUE7LxlozFmLR9OKqqm9PJmoM5tFjazCkhX5fYvX9nQcONWli+aiD7nEA85rzsfLqtVB2odfFDGhj7GZMF6OFyiJRjTFT8UgQyB0bllnL94+fuLOq7QEKxwzzAQ0uaFyn/fvb932dC36GkDifiELwurpZ8uD23dNV9RkAl5f8ROOLWzfH9InHYIv1JNe07wFnP7xjz/xHd+55bG2PjunP7N531aDMtPe6pKV+6IYwn66ohfVf+oEiV+QTVkbKxM5HLMwHRjl6cgdQR0SS6yb7N/2uR+sSny8+JVsaCoXyA6GDmX5fqickeSJeUDWoSuijHfvWf/uzlVsEfv+dto3X3Nym0aA1lwyoc6g0uP36lg3WPr9h5yGFtzHDuAmL7hVjDOpgBrIHNi/3AJbn/MwZxj2RkaYTIRgBvKOqeYHcsZcBzwHpqX4fuGssyefRpX7Wjxbu2BsWSE/CjN8bWOtNZH1EuKUkjP1YTnJXROV1Cs5guoh+td/ndTq3W7tnVTVVonK9fp+X5vclt1778B3d027+zeOYgc/HBlefhRnNZ4A3Ak/ddwi4cuOf7/peRkqyBieMf/viXh0/e3PBiphFSqq6S0QOYcxbPIGIk44ag3mU+Nv7c7Z87+wBCdUzgqFQaUkgOBPzrGphFFMtrAfJT7kRjTSmO4DVjnZJxaK5hlgu5yyxyQWRVO6ewykoCuSObYAl9m/AbnR/IHfscuAX/vET34r1nsIxw1KAe4AfA2mThnTxh1S3Fo4Zdi8wMW3SjNN5wT4SVEl9eiDpnrcH52WL6XO2JE5/rpgU2RnYQjRFK45N6osbVF2qLGu2YHnwV7YAzz9FGYjDQR3KK2TD8yC3Y8UgS+JFHaq6W2x6R0dVXeocy5Z5JYEuz2/Yufj6lg0GJPu8mOucJ1J64bRFH7fISC28qXXDzu1qpZU0Sk2e/YuF6+f8c822tOwk34D3RvS4tEOttPOTPEkSEdFUbfdY33Zn3Nu1xYpLZyx5buXBwnqYg5PuHmmYESrAfsM9mMGri93zQ7BcXgBbD0IYdfoWkBfIHethovIxHXARSe9cP+vmoc0bXPPJpp1vOUcqA8snztdyAfboCPOA+5w/RTwXGWECLL37gqF3qWqTaGMZgdQkn+/CwFP3/dD/rXsXYqIKI7DU1H+By0d2bze4uDQwJsnv8zWpUztMi/ef/OPrZfLnSx/FKnxjYSFWxFRjML+quP3ZKR0u79v5/WZ1s84lTrShCjf955Xl2E2zQCPGLokJHtTCvOla7tE4/JyIBKloTDdg9JRgN1U9zHvNiioo2hFPTCCQO7YhRvHVjzrmnsCkQO7Yu/3jJ/498j3OWH6MlbSnAfhE8Nkg3r9jZfC3VXnCvlp4Hss5ZcTbIAQHHti2ay/lec4zgC+i89QuHzzI7W+2qr4R9XoT7Hc+BKyIcI6CJKCFTyOEW0rSMIPZDDMo3YijyxqB+ViF7CrstxgH7L99/ppDwxtkrW6VkdpCKs5fVFUtfHnT7qcW7Mv/84J9+cWvb9nzPSzHt8Mdx76Pzu75wzYZqQ2TfV7Z+RURL8UnXvP0lLYLRvX9UdqkGddHHoijllPdcYSNaFssv3rQPe9h93s3zIhtwnpnk37y7tx6D5zbNyvZF7/jz+9Jycfjzm/qHz8xzDoUY+tCbxGZ7/afCSS5gqCwqEItICAm4u9hDnhdR+96gHd21za9SXA9O5QCI1T1fyLyPEaJnwU0adug7hcv/PDa3yT7fUlRaao0T4TL+3S+PThh/BTfuNxYAwI2YHUdjbSiROQpgxqDeRQQay5vtWrHnlsaZdf6TKCRz6vozaoqIdXAv266rOFZv3tSN+Xtv1JE1mGG84Drv8tzj1ifEaamwsa0Lhah1MZuirDKyUbs98zBikkyRaSE8gh0B+W6pI+67WJFxunAw4Hcsa/5x0/cEvH8j4kwllHIAG4qHDPspbRJM742FbObSkqfbZzkf9AfJ30dVC1aVFD037p+X90tpYEdYs5FGlb1CpS1kPTEmIMl7lGhTcflMke459tTsQ3lq2QwN2HnpwjrudyKDUWOKwbgsBO7Bm93f7cAdpeEdNpzG3Y9PLBerft6Zmd8u35KUnbIoq53J6zb8cKtX6zerW5ElojMxCLaJkCvQfVqZbbLTOvh92JHWmJ9jlcUjhnWJG3SjDIhdRfpF1Jx2koDYCqW70zCnNQ6mPrTaxhdmglktcrO7BAyebq4EJG011dsuulKKxIKUH4NtMWitBL3GS0xpziAGee6wOXY+Q1XHu/DouFSIJTs90kV9RgUlQZSnpv15Znf+ZZswdat/dgszi73jT7nJ4n24fd5ySHV+5kw/kzfuNwKrIhaH09YLq/GYH4F0Q9YeN4DT+3u3qzhr9+5e9ywhlmZ1xERtYkIyX5fWrM6WT9Z8/AdZ/3u9Wnn//qVj9oDV4jIBoxOiztH0lEsRVQcExXet2ALRa2oh2I3UDZ2Y3Zzx5TSsV7tgoXfu/QKn1dJyq/CrjFx6lyAwjHDBGufSTShPh24i69Ji4ljBoZ8L6fuL37euP597u90gJBqKKCqhSEN9kxPvWd25zb3BGH39IP57z66Y89vPs8vDBePtMGiyp3AZOx37gG8H/VxZ2K5zKbAvCh68qtiMOtgo7naYd/Hh0WZMdMDYbj831C3bXOMBekG/As4+7dLN16CVX6uapuZ+vSaQ0UXYz2cQzEh8zDSsWkk80Rk9i+7trhXE7dYE1Tl090HbjtX5A3s/kqm3CBG/n8gFgW3x4yZYPT6SqwA0I8ZrJJ9RSVVFvipamm/JvXexorGwoOz/VhO8SBWD1Efu57mY5Hkbow2LcKo4nBBTzJ2X/sBZqzYsLN3yybB9OSkBMVs+P758dzOWHrmAGY0i4DiEZ1bn5Hs9yVMUQkMVdX9wQnj/wU86BuXG7m2rcSGpGe5PKj4xuVWpW51wlBjMI8QYpJmjTDP8YxFm3esaZiVORsr1KgEv89LDoZCPX952Yg7fjX5w185T6obcJkrqZ6vFae3Vwl3Yx1yj23uuDzsRk3CbohsbDHKAuoMa9lwSEkwGEqLndYJI2VnfuFFTUWmAfTIzsiYdW6vel5ixzO8CHzl4XJGo4Bdj+/K+9svmuQ8A9wEjD0YDDYoCGlJjt/XKMvvlVFbfmgwvFbGmLNrZ3YclVXr8ncPHArnI6eq6la33+ZETbJwFbO1saiyOZWnwgQ5zRW73DWbhUU7qZjxCmFzH2PeE47dGYyxHiWYoRyMRVFvYM5FX2ykVx5QZ/XBwhKxqTLnYCOxInug04ACF/F7zdJTSnxVjMJS1aSdxaWtMOO0D7sHw8aj1B1XGjbQ+1l33BnA9ZjR3otRpYoZs9JHPl1W9NPBXRN+bkiVD9dtf1mj5m26iuGLMCNZHxM+nyoiFwJP44rJVHW1+561VPVpd/7bAT0eeHPG+z8ZOXg0cVrlQqqh0mBo0Rfrt97l9tfBfYcsbMB3lYo9LvisFQqFbkNkLBPG9/ONy90EEHjqvuCbC1Y0Ht6x1Vx3TAQnjF8K/A54PjoqPdGoMZhHjgHAF9iN2QybaP43EozP8XleSjAU+jETxo93i+I8EVmCRRVXisgerB8qn3KjF/1Ixn635Dive9jNGn6URPx/T7Pa6YuSfF6VxUGpft9eXOVuus9Lk7CrnZKMJPkhFEILKtW8VKVtedpDTAB8FNY8vsA9nYdJkP3xqrpZN/yxeaMnvcpi/PhEUoKqPW/OqfPPdw8c+hkmuB4ZLUbL4WVj19nrGCX7RYzilxCnf4SZjVWMBxzVGXbwKinsuBTFICzqDmJtJ/Ow3O9OLJ+XheXVPseqaztQTvFlYnn/Re781nWP3hhNmQbs/3D7vkDLNqmBFF98VaAQlM7be+gAZiAzsNqDTIziPOAezYEcZ7SyMKO+CaPed2BCBh0xkfVmh0oCez7dsvvJ4S0b3hCVdwUgEAqVbNiXP/Om12d1vMnyk5+FayJUNa9d3Vr7nrli2C+65mSde6gkUHfXXdecdW7rxms/WLftHczxqu12lQyERKQ3Rs3mAZ8eLCrevHHP/t2tcrJf84nn97xypyEYCgVLg6GCf3z42a0YDetz330LFjz4dx04tL1+rfQ2VTjXAHielxQMhern5RdOaSAyPPDUfXuBRy/q2eFG51iE0RVjDM4LThh/08k0mjUG8wggpm6RiSWpR2PiyCXBCeOHUcU5DYZCGaMemnDrx9+6Nw+7aAUzNOG8zZlYZd1y92+k8SuM+rvSI4aKRgUEcsfOwLzuuG0wpcFQ0eKd+94FNoSLS4puPH+1r0Hdjvh95g8DoIR27yO07yAhy42+lOizT3eINdKfDcwK576icVvDehdLAh7PJ5IyKCNt+KaeHVc3W7A82vg1x2TgwkpA52C9brWx62ptjF2e9pTsDS0btL2xTaORhWOG/TZv9OD624tK9r+5Zc9rPbMz/xnexp2PvpjqjB+j/j/FHMLzMSP1OkYTLsYi8RAWsbYE9opIP2yuZCFWGFSAGYp8TCDhA8zonfN/C9dl3NimUYCKw5orIBjSwGOrtk7BjMV0YFOTzLRGD5zb59ozmufck+b3N9x6sCD0wpL1c/42d0VyUSDYDrunV2KGeRjmEKVh+dq3gakjWjXa7Y7n58FQSHyeF27/CAVC+vqgJ6e8geWzBXO0lwILSn95Q/elP7js6WBIU5N8Xmpakp9gSNu9df3Z6omUJt3/zIdAUxHJworP+mFU/xStKPL/zmV9Ov/ld2POG9GxUf1eChIIhvTjpWsX3/H82wtWbNt9Naa6tAOnQoU5PPr5fd9fFwyFnvZ8vrjnLRI+z/Nqp6V2HNm9/Z1/+2BO0Q/OGXiTF8NRwBySqzGK/qStM3L6V6OfeIjIaIxS6QDkqepnAMEJ4xdRURC6EgLBUODCPz59y0fL1r6AGbjo6e1+rLm4J3ZzzVPVavVHVheB3LF3Y9MHKlXDqaoWBYIH2/71lW/tKihOB77c+9NrGmYk+d9yxScVtw+FCOXtp2TXvuJrZy27bcq2vJejWiG+EhCRjtji9n6iCr5VPTosT/O8jlXs7hDQp9mC5WXzBF0146URvZqDMEP5PuaUfRGjKRwRGYEJf6+Ifu10QOGYYd0CIZ0pQoov4voKqhb4ROZsyC+6sPOUz9ticm21Md3UT5xSTTYW7a/FjN4AymXrGmDGchMmNfcelssrwRyMJ8POpYi0A76BOR8ZmAjCBwVXD+2D5ZYr5e5DqkX3Llr/xJ9WbCnFWJ30nPTUvC+/e/HlddKSm/tNgB8wJZsDxaU7zn/2gzvmbcv7EKsovRirNwjfK5uxPGM4Mj1wdZeW3pguLb/bp3FdX7PaGUs9kef94yeuc9HXRZixWwr0794gu9PcWy560OdJvGEQBa8t33TXVS9Na+jO13YgW1Unuai9bsSjGRbx7qyVmvxep8Y5BQs2bmtaGgxtxxi1NRjl+2bEOfQD/TyR9tv/es8362SkDY4VIcdCUWmg5OEpn3xwRb8uvbs0bdC4is3n+cblnrTUT02EeZhwhRpgnmc6diOGMVlV20kC/cp9BYWFHy9fOxRbNKcTJcjtLsDFIrIMo2rOdXmXecew1PrhHYcKz6iXnnKhTyRJynM1+UDhfdMX/nhXQXEyMMcn0jYQ0mdiGUsA8Ty8ulms2rrnrinb8qYBF4nIcne8p0yy/mggIv2xCsQ3VHVfwm2rR0uHB/tGomxOostltsVo/taYH7M+zr5O2wizcMywZOADn1AruqrSJ5IeUh28Lr/oQyz18THwoTOUPhHpikWbWzBx8BxsTuReoG7XrPTQDS0bNulbN7Ng0sZdG/+zdvtsjB14Ces9Ftfz2gNTEmqM9cbOiXD43ll0Qb/RWcm+x+snJzVQo2yT95cGNz64bNP//rJyyyqMJWoLJL9x3Vmj66Ylt/RFjQwTkczM5KSUN689O7fJn18KTz+ZiV0Hq7FpNcWuvSNMm9Z+cemG2i8u3bDdbaPAQO5/pjNmUNdiEXdd4MN3vnHuWYomJyA30gc1r38XJp33OVaA1ElExmLXT7hSfz+Wk3wC6HCwqGTL3HVbCjDnowPmcPTCnIifuZRSfXceS0Kqa5rf/tALb9wx9tCQDi0u8In4fZ7nS1R4K6AIJW0b1K3OXMyTOnC6xmAeBpxh6Y+VbvcHXo/MKU2cueC56wZ1v8fvi71+qWpBXn7hb9TK73pR3sC8FlgbGUm6yHOpMz4dMLGCg5gh2hpj99VG0v3PZHrCq59/+6LHuzeoc8vewuKhtVOSt/o8eVJEnnlo1pIDf7RikyH3jegp6Un+2on2pyLFm9NSh2KNy5uwPM1VIjL9aI/1ZMLRgMOxBey16qgr7QoE3m/kT+qYlLgKeT+VlWuaAytdDm84FkkVY4tiIsHu07no53JMxSrmauqJpA6tn9V/UL1at8/ZczAEDHQ55HaYgfsSo1uXYb3A+wuuHpqWV1x6U+0k/wUh1aAn6KB6tbmve6vvv7Zlzy3f/3xVCkahfg+zLn6Mwp2hqmUVuWIDlBtiDstjZzfMpld2huwqLl01cf3OhVif8yG3rXf34K5Dejasc0t0W1kYPk+SslOTe43t0eZfExeuzcMcq5mRbIyra9jtHuH1pj3wlNsk3K8dfmzFZvKe7xO51m/UbVzUS0tpVS8tZdiewuKwwEIm5QmW9u5cpGHX4mLMEPbGIlkP6xmdjxmtJVj7ThfMkViDRa2lxYFg8PwHn3q5VmrKwvuuPHvIt0f0H5Ga5I/r1Pl9nizatGOCz/NGUrVNOqmyeTUG8/DQAct7dMQM177wCy7yHJhTK+OHo3q0/wvlZdsAGgpp0cJN22de/sizj2HGsi92Y8zBcpcjHK2xDjOgO9UQApaLiSy3A4aJSBFG0VVncnsFuMXprJAyr/c/31wMvNdA5GZgQmREqKrLRaTh7sLin4eq4O09kZSejeqmYjm3N1X1A9dzOEJEtmBee1W9dKcUXER9PpZbfrOqaNkZuj7d0lI2vd6uZdztikOh4KLCohcuX7UxBLC5Vye5evVGDzMAH2NR0EpV3eqowhKNL6EHp3fRz6VUMU82pBq4rGn9c+bsOfgx5mQo5TnM1sD/wtG3k2x8t06yv5/dS1K2vtVO8jW9vmXO5Ne27L7/nW1762LGcipmdDsADUWkF0blNnSfsx+L4J75aMe+LR9u3xsAKzeNhKqGArljuziDF3dN9QSGt2x4+cSFa/+JGZcOzimL96iNFbxcFef1EEbJdqFqsQGAYL30lDV7CouXYxFjGhZthlvXirHisjcwA5iMjQl72b0+CssbT8XSRpuxtfB14NNwO4xrsep0sKi4953PvfP0Nwb36pXi99WRGFXHqlqy51DhnJfmLkm+/6pzl7VtULd3FX2gnyR47bijxmBWE86Y9cUS3cmYhxX2AgdiNMaUix5+endwwvgPgB9hF3oK8IXnyR8H/eafhYFQ6HxM/7EJ5tWtV9XPgc/FplKEC3+SxQQO1mLebAiLQFZhFNAZLjr9QqseXBuJnlhUsiTiOR8RFKG7YM8AGtRPS5mJRTxxoarBJplpKzBPsx9WubdBRLZhkfjVIjJLVWMVrZxycNHFBZgYRNlCEGfbJMzj7gasXFxY/PgjO3Y3v7NR/e8BSZ6UL9pB1cK5+YXbb1i7ucnrHVp9p0d66neAXpPaNicvGFz9ZUFR2rh1W7Zh14KHncuq+lpPW0qWKnR4I5CCGda+WCX4ISzP9mqUmtUFQK9YKREnsJ76+x6tr3hn297/YrlDxSK0vliF7T7MUMzCHOPhWNFVKTaRIwUzNKnumML/T31+9LBhl3dqnhRPxAJsreiak70JiwyDmBEKJng0ddt8gN1bIcqFCkIRBspXFAieoapnJDI2fs8r2pVf9KL7jplY20mZTJ2ItMbWtw8i9t0MyHD38zLMiKs7Zy9gxvQyYKdra+mKVShvBzaEVJ+7+T+vNJh823U/DQRDWX6fV/ablwaDxYeKSnZd/dfn7wMWtapfZyNW9BYv95mPtZecNNQYzOqjK8bfNwZedqoU6Vj+pATLXxYD+MblbsCa+O+K3EHgW/cKFoWdid0E1+OiMFXd73rOvgC+cAUNbbAG69QI47nd9VGtwTzsAa76bz5mfBMt7nWxxX1y5M1GxZsvCYty/MCGB2Yt4a7BXYtIVC2oGvz5R/NXY976CBHZrqobncc9U0RWA2eKSHusYOOUHQcmpspyPtYXuyTBdh62MPTBPO3J4cVbRL5olpw0vGNqyn090lN7lajWAhame974b67dLP9o2eTRjqnJo3H3n4hQz+/veGatjD8t79b+8Y6LVr4iRokfqgalfTobzOkh1YviVEUCkOSJb0th8RTM8aqFtaCEG/CvEZFCrFn/0KZLB/6iXkpS3D5AT8Rrm5nWOycladqu4tK2mDHMxwzlIYyqbUm5IeyFOSx9KY/Awo3/eyKfG9Gq0R6fyKUkaCsLhrT4o3Xb8jGjsxGbgBJXj1hEGmGjuPbF2wbMYS34+fU/D6q+449TPxEIhQJr8g6+ubeoZD/lVdeR/b5hx/+TqDVkKZZiWYo5Ed/E1q6/Yudnlnvcghnbedg81jQg07UKbb7kT89cdfWArr8e2aP9wKy0VC+/uDRv0abtE87q0mb8Jys3hFMdOz/82U1PDunQ4js+z/N75RFpCDvXv/ONy/0w0bk43qgxmNWAS8b3wdE4qlogpjByDnYhzU9kqMJwRnYqViHXAauAvAIr7HklMh/qbpJ5WK9mFmY8B2M5n7DxXI9RuC3d8fUV05JcG308zjCejdGjhyJe8mNeK84BGIUtBtuBPgeKS5c9/vmKed/u02FIUoR3GEYgFCotCgTn/HnOsjkYnQNwuYg8GdEftkNEJmPR7ZUi8gXWx3hKlWiLSCvMmZmmUU3hEdsI9lv0xyi7aIF0gPyfbt6xEZgI/Bxzeqaq6qKVPTteATTzR0SeYfhFUvw+uWVNjw5vY72CH1XjsINUP1I71fC0WotTTIRUA6sPFi7/26qtozCn5CDwfJiidot8Ok4y0u9JfC68DBocUK/W6re25uVgkVYxxvZ8ibWJhY1iL2CRqlaLAmyVnTl90fcuKUxL8selmJN83qGXl2/8DRY5tgGGio1l24QZ0F1R90Q2Fo1WiWSfb7qqTgqEQtdE5zKDIQ0UlAbyLnvh47nYGrIZE1mIXAc6Awei0zwuNeAXkVEYXb0Huz+KnaN+M3bOPsGCicVqw73bAT4RORsY/M6iVdveWbTqOUwKcCfWP9stsi5ARPoC0789ot+eP3/jgh4g5yb7faWeCag85BuXO7s65+J44nQtFjjR6InlCNaq6loR6YFFllNVdd7hLPwuF/YuRsf6MOX+Du4z4r1nv6rOV9WXsQvuENa8fQO2GJdiXt1nWGL+ahFpH5Uz6IvdECupCB8myBzWmVyHLSRnuNdvvuO9Lx4Afh8MhUpDIYuiQ6qhkGpRSTD0Sbd/vDERq7B7HvPaU4BfiEjbMEWkqkFVnYflR9oBlzoK+pSAiHTDzuXbCYxlU8zB6QFMV9W3YxhLsAgkA1vsGrq/awP4RX7mj1Nx7JBeovobbI5idaqiT9uin7RJMw48tXb7QyHVohj3UHFI2fnNOSuexRr+u2PFPWX6xs7BTMfyaAMKA6EDVAG/58kvu7R4CTMY81R1EY6KVdVdauo/ghmQBdX5HiLSfMP+/Kv+8fnKXwRDWhj9XdzfBcCYL7buOaCqy1T1PSwd+il2D54JjBWRc0Skg8uJZ1M+4Dnx9xo/UUXkxqnrdzxTFAgeKA2GitS0qguX7d73ybffmHPhmr2H1mEVtgMxhy98/OGA4NMY360+5lD0wCqMvwT6i0XT4eEPL6rq29j68y0RuQS4Drvmt2G5+f3Yvb8Ji+R3YLN/U93ntMN+x53/nvr5hxm33Dc689v3/SD5xl+18I3LHX0qGEuoiTArIThhfA7wbSwfQkFxyftdmuTo0q27NgFzReQ8jP9/JSpSqzZUtVBE3sZ6naZiEeJ5IrJJK0+Vj37vAexGXuBybeFopzYWcX7uNo2MOA9gRvnlyH0Fcsf22H3XmCtnb941YO3eQ4P+Onf5Y6vzDu4ErsVuhBTg0UAotEpEdo1s22TRm9ed3Ta/JNBz9uZdDf41b+X8V5Zvuge7Ac7Dyv5XisgfsaGyo7FByAuxQpaA2tDf17EF6RKxsvQFehijyY4lIvK1zbBK2EoTXtyiMQA7x59VIxd7CLtGtrp9F1CusNKnqkNK87xelP+OVeF0LvrhR/PWrGqRkTq6XWba71tlpHQVEQUKN+UXvXjR9MVrVh8qKsQcsfXYubxKRMJOWRfMISkCfNN27XvzquY5zX3xKV4Fpg96f/4eRAqwyHQ/tvAXRGzXDUtvJLy/XfpiEFZVuvyeD+e13Xgg/84Hz+1zRbLPdyZQGgxpalEg+GlGsv82//iJ8yocjBn8re7xqVh/ZXNsPRiMq5lw1+hOrWKwctL9zzQF3vvHhQO/t7uw+LJN+/PbN6mVPuHX0770YSIJkzHhhi6YU3Ce2ICGOhj1W+b8OWe7j9v2HczItsVSU2nYb/ImFjhcLjbzMwdz3ptjzs2Lam1APd333eGYrvWY07wZaCkie933DRe9vegOIxWLXk8Z1AgXRCA4YfwlwP+wiykNIBgKFQdD6n2ycsNt5z/4VB7mMc06Fgu82MimczAJsKsxr+vZI9m3mIZjG/fIwi7KfMwQnI1FplNVNRjIHVvX/d1XVZNFxBdSPSQQvOfDea/+ec6yg5h26TOqus95gWOwIosD7vPSsQT8h9gNVZ9yo7nFvWe020+Oe30JRsUWu31kYPMBs7GI7YROKHCFXGdjlOZ7WnnkVm2s8KYJRo9HS9nF228PLMJcjLUvLMMW5dc39uhwUGLQsZEIqBa2+nJFtZq+xQQVGqvq1OpsfyrBRVHXYH2GRQVXD124vySQ1vrNzzoXBUPnYNTdm6oa1kmugzX9X4ilEcJsyCpgTcHVQ0sx0YFWxM4lFgDD0ybN+FxELsDSKZuBG1X1P+4zkjGH8TVNMBTB5RdHYAYX7BqeFWYnArljs4EGl/3v4wZTVm+hutRuxP4zgW9hUVszzLhvwSK0zdF1AM6oXon1dK53z3XB2kKmYMZ3H3Yd/w5jJZ7HDGJv4CFV3eHeV999t0MYddoKu/+3Yvf7EMyha43d222w/s7lLmd5gXv//6lqSETuBJap6hQR+SYwDXN+PseYgwwsV9wGyFfVuc4ZGauqTx7OeTveqDGYDsEJ47thlETMhSoQDJb88+O5V9w28a0px/JzxZqn+2KL6hXY1PWjoh/czdbaPQZgHvhGIJSTnrJwy0+uehYraa+U+yoOBgO/n7H4F7/9ZNEjYQMiIgOxiroK2p4icg6WtyjGaOZ0rGDmI1Xd7BaV84BXMKPUA/OeV2D5oXy3n9bYTbgei+AqGK7jAbdYj8Ia3adHGkJn7PtgtPkid6zV1skVG7vUGvOY78Ui/DbA3AVd295Rz+/vHu+9qqolqh+0Xbjy/Gp+Vjugpaqe1GKIw0HhmGG9gXEHSwOtF+8vKP3Dso1z3t++7+9YEcooLGr7DBMFKcHOZV8sKgliRT8FWGS0GDMShW7fDTHqrysWhfpU9VBpSL0VBwvHDXhv3ktQpqRUhBnrS1X1Ofd8L6CuqsbMH0u5RF9HLA1RH7tGFmqM1iNXvHdheP/VhaP/+6ibi+oc1PBElmaYM7wRM/jb3bnprKqvRe2nPRYdTs9KSzln8e9v05DqT4CGBwqLNk7+fOmk37zy8faQqocVDia7c/clFjR0dJ+Tj0WTKzEn83Xs3G/F0kn1VfX9iM+8BmPPFgB3u+3nY0MKnsDWuiXYDN3/YPnji4AXVLXEsWeXHO55O96ooWTLcQ8JKkF9nuf74bmDrsW8tWMGR2HWxry4z4BRIrLuaKItRyUtElMIqoddqC2Alt/v1/GO0lCofbLPF7NQJMXn8/9qeI9L75+x8EEou1E7EVu/cS1Gm6zHSss/xBa580UkbDQXYjfa62qTEzIxr/IqEVkPfKmq60RkK3ZjXy0iMzW+ss1Rwy1iF2A08RcRz/spbxFZDUzSaogVRLxfKJ9Xeia2uNXGFvmlwEv1/P6tGDUWs28uBMUpnjf+ML7OaVMlWzhmWDqWFjgTSKmV5PcNqFcrMHlo10sCIW2T88rsLwOqrbDZiqswwzQEo7f3Y0zMKqzNSsVywX2wa+ZLrOBkBzCgcMywflgkmiYi8/q8+8XStflFHRERl1Pch6US0nGzK93v3504I8VEpB4W4YbXiVIiqqNjwTE0KiJ1taJea1XIJiJ/qaoFmLFa6ejSHOz6Gui27QBMEZHMSCpZVVeJSOkZ7Zpf9u7d436W7PfX8ftMtq9Jdq0Gd14wtPft5w9+v8v/PXrblr0HbsYiz7lY0dNuzFg2crsLYffFLmyqTliZahEwRkQaOzagAbZOtsHWhbXYNZoOFLrfbikWta7FirkGYKmZsLOcwilGx0JNhFmG4ITxB4kz0iYCh3zjchM2Wh8pXDVZMhbVADx+OFFNjP2lYH2gH2v5+Kj0nXde/UGdtJQzEr+bYqCFf/zEnSIyFAioaiW1GbfA3IDR2HUxevkLzPM+H6vy3ILlTfZF7sMdX1f32IEZzh2Oph6GVePNcgvFMYNYdfO5WH/lSvechzkFfTCP+XOtOPop0f4yKJ9Y0xQ3FQajuv6BeeOdMPrwM1XdtrlXp/uAO1S1TOUmZJElsw4VvPDNtZuvO4zv0wLooqrvVPc9JwuFY4a9hl0XlVofSoKh0ne25824dtbyezCj1RWLAD/DopTN8ehwsSrygZhz+Gm8HLMrRlmnqotFpCGWN5sPdFTVd13hVxNXkBP5PsGiqAGYg3IIU+mplnCIiAzBqMYF1dk+4j0HXFFSVdsOwK63jdh1WIhRt5uA7YGn7guVBILL/J7XzosxELskECz9eNnauRc9PPEpzNlriN23SzGDtk5V94i1OrXAjGaHyGvOMR09MDbpCqzVJB94AGtD2YUxS0NU9RURGYYVGT6HRcce5qAG3f6aAT01Qn3pVMBpWV13PKCq1SnNP57l+9Pc/ldiF+zZR7m/odiFHlmWnqS2qFeFEqCei3zbEqda0FFQmzFKcCuWF+2KGf33se/QFKNm2oi1bYTfW6xWNfs8dnOeLVZ558eikP1YFNqpul+4Krib+jyMMg4byzZY/rg1Rod/lMhYimnvthCRwSIyBnNKWmCG9lVV/R8Waedjebbd2EJ+AKdq02zB8nuDqhevKCpeHzRa+sDuQHD299Zv/XTcui0p4SKJauK0KPopHDOsA3buY/YJJvu8pFGN6w6rk+y/Cfs+/wF+o6qvq/X0xs0dq1WRv4fdQ71F5FKxebXRmAH0cazJPiwySwMKHdXaEzOgZXD3wOVYTk4xh/DF6hpLh03YNXI4yKYaFbLO8eyEXXsfYa1MU7F7uD8w9sG3Ztzh86R5LGMJkOz3JQ3v1Hpgvcy0rliO8z+U3/ObI4qB1mApmP1AY4mowleb3hNyx5KNGciG2G/ShvJovsDlVhtj93kmxiLMj6rdOOUKfuBrTMk6arAn5s122Pjnuwqa1Kmd0CDuyy/cVd/yeeuo3DN1VFDVoIi8h92c87HezOUap8UhEVwOrR5G/YWfawScJ7BaVZuHI5tYCKmmPDBzcVjHdLEmaK7GzkUHYIVa/9VrGG3VD7tZzsYizQ+AkSKyJ5LCckZ3iZiKSLjiV7AcyluY4EE7TOszbhFGVRCRPtjN/IZapW4TLGLwSBAtuPOUQ3kEWR9bDDZjOcrd0deBK3Qowg0lximzUF4pS6uFK5djtFVY3GIMVuQyBrhTRO7S6k2pOV0o2TFUsd54SMmiUX2nNn1tzqQj+QC1nsHJ2PU4UkyW8bNwrtzRo8uAwWryjQGMGSnAnLy9qlo2DMEt7KPccX+B9TAfiejGVuAcEUnR6ktEZlO9lpLeWEXvPihrYdnlHvNEJPWbQ3r9w7OcfVz4Pa/o9pGDNfflD1er6kIoqy0416VOPnO5xdWYc7kPM4KRDvlszIHc5tazrlhdyBqskGoTloroiznXIeC72PmPPi8pGMNwSuFrYzBdgUtXjDbohPHsG7Fim381yMpcAvyF+JqM+QeLSx7EFqjhQIq7kNZhF8hRiwKrapFYu8mlWBL8myLyUBUGqwKc9zwYi5YixxcNBj59/IuVHe4Y1GVoij92DlNVNa+w+PN7p355DuZMPCUiGQkWio2Yvm2ysYpa4gx/P/eZn2FG82PMCJ4jIq9Hny/392pgtaNjemEGZiF2nV7m8qELD+dcOy94GOZAvIqpJl2ALUhzsf67aJGH2pTTrE2waHEL5nVv0+pNYQn3YgoWZaZT0bD1BDa633wAdh2FdYX7Av8nIj+tBi1/uhjMeiRQwTGot/xgQftmpkN8AKMkD6ti3P2WK0RkLeVCGUux/FgAmN+9Qfa4DT++8sED91x7U7LPqxVU9k5bv33qlNVbfgVlNPsF7v2rsZFuRzxEQK1ydBt2Pa2panuxCtEUKgoLxNouEyvKeTHeNqpaFJwwPgjxx5gA+DwJ3jK839zclz/s6L7/HFdbsAUrwrpaRGZi6+WFGBPWjAiD6VIqpUBtl+/NxNaHAozavcht+phzrj2scGsFZoTXRRxSKjUG88TB5dfaYgayC/bj7sYGnk4ior0BIDhh/BpgbDAUGujzvAq0USAYLAGZ37xu1j/cAva5KxxphUUptURkI/aDb6nmghoTqrpfRN7HLq5mWMT5v8PYxXD33XZBhchqCXD5fdMWFn+7T/vFPk+6+b3Kyj0KhfVN47QpdpFnYtTobqzgYl3kIq6qpWIFOy3d6+FFa66U91ctw6LOj7H8yiAsxxHvHGwGNjtarRdG36zHaK12IjIt/P0KxwwTjH7+PvZ7bAYeBz5Of/GTJCxfGcKi3IHYOZ0PvBs2vI7WakJ5FOnHDOR6LPo8kjxqvjt3gnn7GVQsKuuBjXFLw3pSX3bn8iOMyh0B3Ar8uYrPOaUNpqM6m755ZrfgsJzaxUkJJmqIiC7cl5+HnY8sIFNM+u4ARgNG/nsg0X0WcZ8ux+7Ra0Rk7qGfXVfs9+R3CnX8bgyXDxqe3brRFee1bXLmnWd0uQ67VkOYIVp8LJxhzHA0pxoGE3Pm9leDweqH3etVXZ+fYxFeXIH20mAo/QcTXm+JsR7tsBTJVLUinOlRtQVhQ9YMc4gjsQOL1vtirSQhsV7P/ZgDspPyGaAdMMMbxLR6fREOUirlLTunDL4yRT/OW2mG/SidMU89XFkWLvuOW80GMG5o77rfHNr7qeGdWo0oDYaSQqpeks8rWbMzb9LQ8f9+Ky+/8NVYN4/z9Fq5R31s0V6PRRBH1CLhosJRmLF/TBPomka8pzP23V91Tw3D8gil2KKxHHi3UWbquV98++Kr66enjFIl4PNMjCcQCu287Z25T/173qrnMOPygvOO/Zixao8Zr42Ycdziboj2QBtVfTfGMeVguaudmFGa6Y5ljqqui94+zvfKwn7X1pjBzQIW/7Nf+0VjWzd8BTPA4WhOgfxASBd1ffvzxzYVFG9z7+mAOQ0LMYPUkPIosg5Wmr8Fy9kcTjVjvGMejFX/4T6rJTZ5ZKKLYO8FHnXHIKo6y70v3E+nmG7nv1X1zQSfkw2cr6pHRGMeD7jrpTn2e7UA8kY0yNr11pndPpTE1OAmoGXapBlhXWMP+12zMLYh8t9a2MJdZkAj/r8/2piKaQSfsePOqx+pk5rc3BnyCgiFQsGNBwr2tP/bq9/BospjVnAm1iZxBTCxKkPo7qcWmqBVyEVwF+LaMBLtLzhhfG1V3R7v3IdUdfu+g5ta/OSPD2P3Q/jcbcakCPe6z/RjhXFnYtd2MTYtpiwSFOuz3IwVd92nJiOaCdyHrYnb3Xs/wGj69zEnPwOrLdjo9nM2JqZQNmT9VMBpazAjckvdsTaAttiCuRZnIDnMPKOInAvknd2lzeaW9bPH7j5Y0GLO6o1Tdh0seA+7OHeoTRZJtI9Uyo1nY+wCWQds0MNoUXD76kP5CKR7E+VPIooTXscchfOxCKc5tsC8ikVWF2B5tzn9m9b/3ktXD9emtdJD2Dn7NOn+ZzoC47AbZWGc79cWM561MI95vfu852LdvI4mPh+L3DIxarY7EUII1Twf6dhv3QOo/dl5vcd0yUrv6cUQnA6EQqWbC0u+7DLl87/i5o1SPk2+EbawbnaPHYdL/VXjWHtSnsPMwK6HesA/MSfoOuAPWNn9i5GLs6Okh2Dn61rgZ/EcJve7X6Sqzx/L4z9cuCi9BWYkm2KRxnosv1YAUDhm2A+BB4nd61wIXJo2acYH1fw8odyYhg1ppFEtptyI7gcOfDj2vFZDWzR4M1E+L6Ra6IkM9o+fuKA6x3E4EJGrMR3WhLlpsYHlIY1oeYqxzQWYQVlcjc9NffKWK377jcE9f+irHOGHgIN/eXf2NXc+/3YDyjVm+2NOahrwNuZsrnN54Bzgl5jhe0ld9a9zbC/CqmvHAH9S1d1i/doXYXqzMzGj2xgLKD5wueKhWB3ENLevC7H+501Vfb8TiRNiMIMzJ3tYy8Gt2GJXC2s9+Ah41Ddk9NLq7EdM6aMztmh2xML2zdgP9CV2AR3RwifWKHwmRsM0cZ/RGChV1afdYj0a84Kqlc9wedOwp90MoyLWUQ3ZrYh9nIVdfIuBv8dyANzicSnlguwXYJFuWyw/8KJaoctwjBZ8H1u8z1Wr6ow+D7dgyfp3Ezkc7gZphxnP7u49H8eK5J1HP8ydC787D7UxRZXD+s1EJPkbLRsM+0e/9u/4vfiqOYGQln7r0xXfm7x5dzEWsYUN5NbDyQsfCRxD0AqLrNOxa7U3MAET30/BqOpSVY2l4XkhFvFe4N73/ViRr8s3XaGqzxyfbxIfLmJphf2mDbF8Vtg5jFncUjhm2A2Y4HoGtliH6e/vpk2aMfUYHVfYmEYa0azXrz3r+vPbNP5GvCHPDsXAPf7xE/9yLI4l6rgGAsFqON3nYbrVMelbR4+eibVhJKSL3fVxIbAh8NR9tbE2jy4Y65SMGcO7feNyVzunZyDm+MzCIviLMWO2FEszhB2hethanoWN+VqErQXNsbVnK0Ytb6aceSvGChEVUxt6SVVnuJztTdj18IRjrUZjk1OqU/h2wnDcc5jBmZNrYyowYW8ljHrYCf5mcObk3/qGjP5t9Hud99zGvbcj9uPsxhaaJ7CCjaMuPXbUz2BgtqMgMzHvSYDOjlsvEJs0craIvFydaNFFW2uANc5gNMMunj4ichA3bUQTj++ZhkXSV2JR84xA7tja2Pnb7R8/8SDlMy63YwobbbCbYRIw112Avdx7XldVFWvxWB/j8/pjvVGdsTxE3JtbrWo1PI5sI0a1ZosJJqx0363YbRsEpopIHnYDdsacpkGY11ltqGpJ4Zhhrd2+417DAnpP5+btJ2/e/Qc9igrbI8QhKtLEW7HvGnZkprt/X4jz/jmYV/448FvgNyJyewzn4oTmMKWiilRdjEZdjlGYVfYNp02a8UzhmGFhyr8esDFt0oxKTMbRwDl5h9yjzLkN5I7tji3KVSFhgcxRYBN2DVSlE5xNnApZ5wwMwt3XiXYSZh+wXOIC93Tf4ITxTdxnbPWNyy37HHc/TRerqB+Gnb/nsfvzYmxNrIut46lYmmMXZjjbYQYxXBX+CVZX0Ab4NxZs1HavD8CYsOYi0l5NXGGh+8xw5e3Xtkp2EuYhx0r2hzVbfx6cOXm5f+iVb2PeTXfMC6qHneAVWM/OqsOh8A4DXYACLVeXqUW5wSxxx7FTTblmJXCWiLx9OHSvW+g2ABucgW6ELToXiVWWrcMMzO6o94XEWjWan9my4c8P/uy6pLQk/zDMQ0w69H/Xf3RN11bTXliy/nWsRLsVZlifDhtisV7DLlg0F85PtCSq8MYZUT9WGbgFuEJEdmv1VHe+wG6g5ykfjj1IrMpuFUa/hFR1oSsGuhT7rev87cKB6d/r2+Ea95wfo44fBN7zj58Y7xxnUIWhEMF/KBDMwZye8AJ6EJszebx7vMqqZOsk+b0vRvbpXxAMfr9RavLte4pLg7N2H6j3u6Wbnl95sCDmoqCqeSKyASvYuhcznLcDD0dtetwNppQXuLXG7o0NWMXwliNhdNImzQhhLQgnGp9QHlnFhFo7xGHpvh4GtmMVpOnx8qNubahN/IKXNu7fmOIMEfupi7ET81W1AoPnG5e7lQRjw1y+82XMEF6BrSfPY4Vos7Druj3GnuRg62RbzJCvxnRlc4Ckszq3Tnnn7nH37c0vuioYCnmZqcnNRj40Yfuc1Zv+g9mEi0UkH6N8z3H73crXsUo2OHNyR5wMVhWbpu/cu//v2I8SxKKyjzDPtVKf27GElOuGvhHxdC2MPvVhuZUc7OIA8w4vwS6mL4/kMzViSoGIzHL7b4X1PHmUz7ncrobiJd+/dGGr7Mw/JPnK6KRkgBSfN/KpywaPOFRSOvCtVVvygKeIGALrih2GYnMbw9qtmdhFvyPiPAhWdTfXvbdArFp3lIjsqyIKRm0+3k6guZrSygZHSbfBHKAzxUr9V6nqJhF5Frj6p4O7XnJzr3Z/sqC3jF49G4tAngvkjv1upNF01HiLh3q1Sf9220YkJ5hwH1AtWXOocBO2SGZjEX4mVn0plEchByP+H34UVOXBV4F8IL1Pncz0t4d3+0+tJH9z99mk+32MTku+ZUyLnAsKxwwbkjZpRjwZxM+xvralwK+AP4nISnX6og7HZbyXKyoJR5Ip2PX4KXZNHouq0ZOBzzBj34kY5yykGtpXVLK34cMv5nP/M3Ks1x3n/G7GaMsVcTarhV17sXRpPYwBml5FqiQHKxicrSYocETHik1EWoOtH+0xp7g3dl0+AwyulZryne+d3f/cni0abXtp7pKS175Y1lrhR0DRa7d/48CoHu3vFBHq10pPBgiGQndO+/nNIZ/nrfWNy31TRD7EKtnfBJb5fd6A/R88t+2K4QObvvjbnx6vSP+IcVxzmMGZk+/BqqOqVMgJhUKBn/19Yv8//e/1xbEuluMFETkTyyPNjnjucswDroNdoJs0YhqEMzhXYDm+Y8qxO8+wFbZQZQDrs1OT1u+8c8ynjiqJiX1FJfvbPDq5zYHi0rI8lzvOy7Gm/w0Rz3fDxJIjv1M7oKtWFm/uiLV2vBKroCdq205AU41R3eeOpR0WhXrA6udGD9UrOrWYFau9xSEfuDXp/mdeobyQqg6wqZbft2H75YM+EZM4i4mg6r4mr8657mAg2AhzQlZo+eSLZJzxxBapzKi/UzF2I9qYlv1d1XUqImPXXDzgpoapSYO9GEL3mCH/Mm3SjP4xXgvvow8mBv6BK/T4CXB7ZNQgIt/BqmmP+GZ2DkQDyo0kONYDY1dOz+rAKARyx7bD6O5MKjryJcCB11dsGnnli9NaYNTtDHUVoscKYsMWWqhqzOImsR7ULmrzJaNf64Y5pJVei9imCWaA4g5BPxI4luoMLI1Sz+/zlhX8+1cXBUKhXwBBTyAQ0qSC4pKDdz3/zlsFJaX+id+96sokvy9e720B0Nc3Lne5iLRL8vsGzp/wp65Nc+r9OCM1hWAo5CX5/aVYkdyvfENGH1OJzCPF8aZk06mmnJzneSUP3jou7+HnXzuRxjIHowWjS/LDlGwStqhVkNlS1UMiMgNrwp98LOk9V9iRh6l01AZa5Q7rcVNpSLOTffEdrqyUJF/eT6/tjuU8wwZhFKbRGn3jtMQoENy2HhZdTo9xPCvExv2cLSIJi4AwozRIRPzRxkStyGkB5rXWB9o3r53xK0ESRUcZB4tL/+AJgZCyHvNwt4VpwLdHdP/x0PpZT/u9mMaowCdy/YHSwDuuOKUdMMRFsSsx4fXwua4Ed04yox7hUUbhKLWUOMYUODSiQVZyg/jGEuz66lI4ZljftEkz4lVELsR6CBuq6ttiLQe/E5FxEXnZMC17WPeO+46NMQPZCstBrcNGne1J8NbTFv7xE1cHcsd2w+jtb2PMw14sz/bI6ElTd2AzZMPzWpdSWbbtaLAJGCwiXpxIPZsY+Ut3P/cmjjC826YFRpt+oEchtBALqrrWRcf9gcYf3HPjw4oOTI4QQPH7IDXJX+efN112za4D+Rt8vvjFVWpjBe8Evh345OU1O/L2/bVeVq2z/D5fCoDneWBO663AWcGZk4f5how+rC6D44HjbTCXYotIdQTLw0UrJwTOox6MUZAlEc/7MSNfiEU4igkTJGnFhv31Ul6t9v7xOEaXr10YyB17oaom/K1cpVkvYJpbCM/B6LNFUdslY5FEZM9kJ6wRPN5NNhsrHqiqCKhITOCgGbELisLb7QZ2l/7yhnZSxWzIzGR/3d13XTOlzoP/q2DY3LlP+eCs7pcPrp91r6r2KgyGfCk+D59NrrgjbdKMGe7zCnFjupyT1BFTgAkLQq+PXhDdYhbu74sJZ4gjI9RamAHKBDKH52RfFQip+BI4OliUcwHmDFSCWhHaXMy7fxX4G9A23ec9nH/10E89kTsOXDmkjU94sHDMsGeBP6VNmrE+wTH7sLaPNpizeBAzkm9WRbt/VeAfP3E78DP3qATnFC51OeQh2LUyI8xOHA3Uhsfvp7KsXBjZlKd/ItETY7riOXjtsGvkbY2Q9zuWcOvkzOd/MKbkjHbNB/uc8EM0kny+pMbZtdpJgnSJiPiLSwPXZIj8c8mzj7bt2LLpMGKn7lKx+ovbsArfk4rjLb7+KmZwEiIQDAY+X7b6I//QKzOP8/FEIqyQvzLq+UyMblNcHoryuXfR+BQzpl2O54ECxSKS0MN1C3440h2MJeJjqem0IELeTcqbkecm2HcIazTuIKYvmQhrKaf0EkIkYXQZ3iZUKyXJF/VcA4x2+uCcjxa+nTZpxhlbCks6fXPOilcvmrb4l2mTZvQPG8sY32WX2jDfZ7HfvhPwDREZ4iLfakNVC93+1qrqQlWdparvqepkVX26X93MRZ4kvv5V1bfqYGFzEWnm8rOxsArwRKSNqobGd281fvZ5vUcHVP8GdPJ7kuyo/O8CCwvHDBscdb6SRKSNWD/cWGzx3Y2NpnpFVRd8XYzl4UBV89VE3T/DGJYzxVovjhYbiS/Gno1FvGVw10UX4jirbv0ZCLx1vIxlJMYM7D7aEzlqit6zlrDuSUn+8SRQIcIKQ38SnDn5pOc0j6vB9A0ZXYzdoHFDaVUtKSop3X7VLx6cC9wkImdIfArrmMBFYwMx2bPoHz5Mx4Y9KrALuNL0A2ekPgT6uSKJ44UpVRVahFSTfvrBF2vF2kcaY7RMrPe0omL01wXLUSW80VyU9j6mG1snwabrcTJXifYnIrKnoPiLUKhKqisPW9zD76uHjQubGhkRd3hr7tYp2/I2TN+1v1oFKaoaUNXVauODJmPX6HkicqWIdJMYYgiHAxHxfbBj39aQJm5RCEH+4v35azF24GoRGSsiF4rIIBFp7wyhYHm3gSLiu7NTs9+3zUxNT66c+03Grt+3Hu7dNktEOojISGwEWyes8vkFVX1DVRdrNXuBv+5QqxJ/EctrXi023OBoEJbJi4VsKlOy/bD8e6Xfy93vPbGhAketUFVNdKxqjdZqBEq7DxbsALIa1slqUo3PrEfFtsSTguM+3ss3ZPTrGJ23ACuuUVUlFNJQyOiJxzPTUrtu3rnnCexCOhu4xVEMxwt9MAm0WNRHmcF0yHePWOOCwr2Is7AK1yrEpY8MSfc/s37j/vwNgWAonnEpLgmGpv55zrL6wPew3qhKVKeU94KG5aeSsYU6bnQZCWdU52ADouOJtxdgDkbMMWIi4nce8TX3Tl0wAyFu714wpEWq+sdwlayUD36eqU5CK3LX2O+WXZ3vEnXMh9RGjf0Po58bANeKyLkiknCySzREpLZYg/r1f1m55dC+0sC+hBWNUHJFs/oPq+qbqjoBM96LMbagJSYr+C2MbmvWvlbatap6g5cg0gmEQimZft/DmHO0FnhWVaeo6nI9TLWpGhjUBgt8gjmNfURklCtkOxLsxoYAVEhVOYofrSg1l439jvOjdyIm2t8e660+Hu120Z/niUijdbv2hkKhKnpATQYybltISLVgb37h/cD/UpKTqtMjLRB/rThROCHzMH1DRn/sGzK6N9B+5catI25/5MncHz78zxv7fuvO/r4ho3/sGzL6gKpux7y4SZh3coOIXF1FNHPYEFOn6Uhl0eAwYhnMAuIYTCibBbcdy3ccUzia8I5zJr4/WWFFaTBU4SIMhrQAWPyLjxd8GzOSD2IX1hgRGR51/hpjg5zDFWc9sP7IalcCqs2R3IQVPMUzJJVoWRFJEZHemNRbC2DqP79Y+agn8gvs/FZASLVwR37h0noPTVrqjGwtTLHkM409INij+vnyeN9NVXWr2lzB57CIrC9wvYgMcNdOJbiFpJWYOs/l2M39OvDWj75Y/VQICkKVo30NhLT4ls9WTkt/8ZMyes7RgBtVdb6qfqCqLwBPY7Mcpw2tX3tkaRVsg9/z0m5o1aCOo4dX6RHqGdegMlR1B9YTvgMYLSLdD8ehcvtQYs/IzKZydDkAm7RSVlgohqGYU/qGHtnIsWpBRNIc0xGm84e8uWDFm0jiHkkR2SsinxGDXVTVAk/k3S5NG/xXVbf7fb7nsSrlRJjuGzL6pBvMEzqtxDdk9IauQ2Uj1uS6mqgkr7uQVonIOoxmGAl0FesH/EyroSRSDQzGLsB4ZcrhHsww8rGCpDRJPM9uJnYDdXBG5aghJqY+Fti0YX/+X1o/OvnVP57X9+Jru7UefrC4tH1IdfOzi9ZNf3v1lvveWbP1Eqz/ci2wVkS+wOjWi11xy5dE0LGOcuxKxMzMw0BYhaYfsaPT9UBfsUriNKwPsyPWAzclkjryj5/4pxk3jtrSKivj3sa10jsBsr+oZM9bqza/leL3fftgSekwzAilYtWK8c5tuK8yTWJU6R4unJFZBixzTkdH4FJXsLECcwrCw3s7YcVBy7BWo2DhmGGybH9Bnzl7DnRZtr/g2aDq2d2zM1p4lov2Ae/5Pfnl/zbuqgvcIyKPq2qlKMIdSwDYKSIFTdNT1moVNC+Ad3hreA0OAy7VMV+sr3gY0F5EpmuU6EgV2Ej5QIAwsokwmGJtZPWxtE/4OQ+rhM3AcpbH1Blyxr8+Zsybu2Paghn4OaqaH5wwXjC96UHEGAiupop2Nxb8/ALry0wGpKg0ULpt38HHWufUudc3Ljfs+P0VY8bi0bwFWHviScdJEV8Xkcuw3JRPI3oBY2yXgTXNnonRfK9oHH3Fan5uC+xHfileTlBcD6bzJMNCyEHMm5uvCSatu3zTxRhFsu8ojtOPKfifixmk17EI6trwvkVkFFaFPBgrTJofa8F1+2qPRZODMGGDRZjn6nc005EcYxrWizpbY0wdEZFvYLRiBm5iTLycmYicD2wq/eUNKwAv6f5n2mOOwp+xqPFOzAP9R4J9pGNN/kOAn+pxkMJzi1UL7Jrs5Y5pNkYRlzkBhWOGdcKu1eYB1RRBQop6PpFPPZHvA2vTJs3Ij9hvb2zB+J+qfuye82GsRgNMp7UhIN2zMopnntvr2UQaupjjcEfapBn/PnbfvgbxINarPAC7zr+ojrPmUhrfwKaXhAvwzsBEC750f1+GydqtdH/7sDVBsBqFY9KC5wqZmmEGsjmmsLMJM+oxhSqCE8ZnYs72EMzQ+YGCYCjk/3zdlr8Ovu9fd0Vsm4TdN6GGt/4hac+hgvaudqB8fzMnn40NlfZw4vxqYigK3OYbMvqUuJZPlsEchnnZtbSiakm87etjdFxPLBf6+uEuiO5iuxpb3OIq4IvIWGw2YYH7OyzRVwoUx4sCIt7fGYvcXtEj6N0S6728BPM+P8KpeohIPyAz7GA4imQD1j6SpqqPVLHf+pjB3YjpQTYB/qpVjDyrxj4vxFoS8txzDbHfqR9GWz2TICoPCxpciU06KXXPJQM/xaLiJOzmLcYi1bdjFTc45+oK97l/iWXEjwbOIHfE+vMKsVYMwZwRwaLOlQVXD63njjuLyimPUuz894w0mG7/3YB7cFEtJtCwDzuHO7CJKgcB1l0y8PWc1KRRvvg584NA4+jPqMHxg3Mgz8AcmxmJHOuI91yC9UmHawouAJao6kYxmcp+2Fqkrj5iJHbtfRzP4T+M462HGccW2Pq2Dbs2Nx3OmhCcML4btq7UBZa+NHfxy9c+NukcrJe3Uo2IW4evx6jkfRX2NXNyPeBm4Io9+w/mAO/Wy6r1kG/I6PVH8BWPC06WweyKRWz1VfW5w3hfa8zo5WCDTmdU18ty1WQNNcbMxoht/BjV8GS4UMNFpV0w77GdWpl5VZ91LlB0uNGb+6yLMC3Jt9WN13L06TWYET7gnhuGGb1SbHF+NhE94wyuX1XniEhYx/UAFqUuOdJiELFG+nB/ZhcsolyI0TiXYgYz7s3tIvgkdfMgI54fhY3AmqhOFUWsEGwwJvS9LWr7TPd5HTGHKu5opMP4boKd486YB74W8/h3RW3XAKNlW38xss/VnWqljZT4/aX5paHQ3Vkvz3qF8sixAWZ0izGG4kvM6Me8tr8Y2Se7cVryoqwkf/3I0WYh1ZBAkYhckjZpxkdH891rcGQQkeYYA7EDY1/i3ldiI+BqhdcJEbkOEyY4hLEls9VkJMO9unuIkL08zONKwtbcMNUaxBlIItrMjgXEVIHCxr5S0ODWouToez5qm7Oxwsxjkt46VjihOcwI5GERVLpUnLKdEKq6TkT+iKlNXIHpkz4ffVKDMyeHvbFmwO57//38VIySfLWKj4jswQwj3z2/G/Mgq4PpWLNz6+pEOm5h7odRpoqN44osbOmBjfuJrIRrjFVRPordoO0w4xcPrYBPXOFKNqZskopFbde4fMzCw6GSpbyPMqwX+193nCH3+iHiN2iHvc1OVNTxDT/fEDv3ZcUFqrpaRMLtHzOizq2Hnbv9mLd7xHAOSgfMUAax8zo9nkPiPOmdferWmtWxVtrjCYwlQMbBQDAXKxLbgRnh2WGvXkTexiLN20XkL7Hy9n3fnbfvjPq1R93Tufld5zeqc7aINA2plny658DyxfsL7r7ti9U1xvIkwRm4F7H7+SoR+TTBor8RU+MKO+vpmLHsiFGzmxyzcSEW+VUaA5cIYhW2LdwjB7veNmFR7XGb3qOmChQ2mrGOeRl2buYmqEs5gAUOpxROpsHMxi6OTOIr81eCW4w/FVNzGQncJiJLMEpvf3Dm5BuwJLIP+36Be28ak3TF8IH/6d2hzcQqdh9dIQtu6oSqHhARnySYNBBxjCViosKjxKZ9xKU43OJ8Dub15WNFMdsjXk/DFu6XI55rii3on6ip6yzHcigxDaZYhWk6dsOcBSx2NGkxZkTDBUKXisgO7IaKq7rkbu5OmCE/AEzEaNi6WlHseS1mTOMpCLUB9kQaaWeEz3XvmQt0F5Evwp66qm4RkSnYuU3X8sHK4TFaR2wwXZFFZ8wR2YD1eu5I/K5yPNCzdYoYhZwQdZL8Kar6SqzXVPWgiPwGuAP4pYg8qDGqIGfvPrBEbIrN79TGI6UBPwSyb6vuAdfguMBFa3NEZDXm1HfA2LD9UdvtFUMdzOE74P7tC7zj7tuLgOVaPp4rLtx92YRyqlUwA7kImwF7IqtMP8GM4vroe0hV80VkK5bOiOfkH8ACnlMKJ8VgumRuCaZ9WYvDMJgR+ygCXhOrxLwW+P1z992RP+bsIT+QKMUUv89Hr/atb8T6ExNVW1UymM4g+d3FuBvz1KoUNVbVnSKyAGu/eD0WLSnlijVJ2DmYEsPz6wWsVlfs4rzGcygfVQRGf6aKSH2NXanXkvLcZVOsRSHyWAuxmZZfYoZ4hIgUYdTg+gh6OhUbrN0Fy3m8H6YnxSpxRzsHIRwdr8P0OGMJRIDlehdEnA/BDLpglYED3Od1JULlRG2K+2vAhc5oznXv0WSft7dtnVqtA7ljM/zjJ1aZw3P50vaYofRh3u9srWLAtMuZ1sXyP3WBeh7U3n/VkJCvyrFjUpVIRKmIPIgp9/xGRB6IpoEdZmPX1zq1nuYV2IzBJnqMtURrcPhw1+mr2PV7mYgswpzRsrXgkl4dD/3ishF318tMT52/YWvJb175eMuSLTu3YWvjpVhF/5KYH0BZzUPYQDbC1qiNWLX2iRIyqAS3bs4EhovpbUdTvkuwgqFEBvOUizBPSg4TyhLctbBoJxGVWC20aJTTZelzj36RlpKSSKGlCGjqGzI6nh7jQKzhdn7U89diOdMOAFrFxPSI9wkWBe+NplPEion6Y5WWhcA70Yu0W5SvwijaAmewLgfmuU2aaHkRUB8gPVbeVEQuxprhO2IzDBdX47hbYVFjKtYClI71Vq4jDqUjsYuArsIi4e0xtj0feF7VZnthJfrh/G1QrOr4CswxeD7aQ3bnYxSw77t926+5pmurRwY1zTlfhDS/5ylmZO/1j59YSetXTFO2MxblbgaWxjIyzlHKxgxjmXHEotk97pHn/t1XcPXQx1X1RomjdFQcDAWe37DzrR98sfourcboJREZg1WJ/1FjzCUVy5fvUdX5YoVDvd3fU6radw1OHMRy7MOwHP/0wFP35QGPqeq4YEjxeZIUDGmRov41O/N+3e3//roJ+FRVV0Xtx4cZxnAuMoXyXOTmRHUMJwNixYn5qjonxmvhIsxY9106cJWqPn0CDrPaOCHCBXGQ5z7/iBvNI7Hu5X+2Sk1OrupiCWHRaDxkUpmShYp5zAbVPSYXVU0F2okVA+Ci1bMwOrPQ7fPNOBFNb0wSq8DdKCOBNS4nEj0IdyXQNjp/JlYwkEP5IOxl1Tlulx+c4T7nGizyW431w8ZkBFx0OwtTAgr32IZp2Wh0xYxU2GM7A6sMfTec03ZGdx9GHXeK8XlFwJtdcrLq3n9W71mDm+VckuTzMv2eF6bjBwGvBnLHft+dC7+IdBKR0VhkfwCYpCYQsFVEMkWkhYj0FlP5GYMVgY3AqK7wxJUXVfVpVX1LVeeo6kq16R6hH36+akpxSINxIupAkifbHlq+eTLwYxH5iZjGa9ymSVWdhOXefyYi3WNs8hnQw1Gy67Hotq4cpi5uDY4v1NSk3sYUe87fsHvfa6p6g4ik+H1eioh4fp+XnuTzJbdrUPfX88f/MCdsLN112Vms/Wos5mgXY1X0z6jqNDU941PKWDrMxNa/WKMJl2DrQCW4tJdfjrNM6uHiZOUwobzw55gYTKBptLGIgXTiazhC7BwmuDwmRn2eeTgH5aiJjzDq7AOsQCdMFYabgSstrs4jbQu84J4a7t4Xjm5LiDCYaiPHdmDGKbLIoDmWD+wLzNNqFFiJTQLpiRnYRVhRTjpm5K91uZlFsQynWmFOffd938YM5kUiMjuC2k3BotX/ub/7Y0VMb8TIs6x036m7iCyJprZVNVDyyxvOVdWGcaYnpKvqn27s1W4n5vRswyL0Aixa7O0i2XoYDRaOFje47fbFotNjnLNk4Nz/rtvRLdXn3fHHXm3uwhrAUzFHLQAs9UQuW3uocKuIvI5RbrdiQhNTgHWxrgW1WZj7gFtF5BlVnRHx2gERWQn0U9UZYsIKB7Hfr9Jc0hqcXKjqmqV/+HFSs7q1n4hnDPw+X3KXpjm/rJ2WMvtgUUkz7N7bjN1L06tKF5xKcOvfJxg1+3IUNbsK6C8imRq7vzpMyx6OIMRxxcmMMPdgdMKx4ql3UcU8wEAwWPrunPn1RaS/2HSIaAOb0GA6ryckURqQVUGtBWIf1lu4FVucF6vq7FgLpEMfLAIrEpG+2HmaGrF9CZULTJZTORJrhVHR6VSezFIGMbQWE24YhlGvz6vql2o6mvtUdTpmwIuwnMx5EnuA82dYTnGAWkFP9EzRjsAG9916YcYznmrJaizyzMcciAoI5I5N90TGxRs1BBBU9d/Yq+2N2DVXB9MrHopRWwcxw/iCqj6jprn6qZqkXF41jWU2MBrLhc79x+pt/xCrErwE+CWmdjLETVHZCuDO59PAQ9j5/A7wbRFpFyvidGmAh4HrxNqCIjEPaC1WPLIOuw+auvxWDU4xdGxc/xqfl3jpDYU07ZEbLuqJsTwTVfUjtWEBp42xDMOlEnZhkXHk86WY0ewc562nXB7zZEaY+zD66FidkHeo2gGQ3z398jysb7ExUF9E8rCoYycm4xarbyrfvQe3XQ6xDWvlD7Sqz/7Y91yPFexMjJWPinhPbczQvSDWe9gBeDXKO4umZMFyGcNEJFtNDSgstl6Izf2MVXjkwxb6nhjNU6HQJxpqBUKfixU0dcLGHuVjvZcbHJ0bEqsSvkJEdo9s22TPL4d1vyeQOzZFVXdd1bnF/peWbXxOrB+3M9Y3GXMhUCtm2Y5FhD2xGywSbbHWj7jwe56/W4PsVphDsQfYXx1DWB2I9c6GC5VWYIVQ4X1PdY+4cM7Uf5yBHYVRbhvEitnWRB6nqq4UkfGYlF5dVX3KPV8sNvR4EEaJX4JR7z2w4rAanFpoSnwZOACS/L7ScUN777/p35OrXaV9imMWVjW7TivWMyzFCgNjsV+nnME8aRGmWwjysHmSR81T+4aMLioqLvlNIBiMqSoTDIaKFq7e8OHMhcu+wHr8Atjkgc/c/wdgOcMrxEaMtZLypvBDlM9rq3Ye0yWuL6I8d3gIW7DjKt849MX4/TpYo/47WrkBulKEqaqhv9xwYcrmR+5+JThh/LqC//xq5Vt3jr1yeKdWmVjkEXlsyWKN09dhEd4MVX1VVWPSgtFQG4+1GIs4F2PnbozLtficAXzvtWtG/O71a896q1+TerdibQ+/fOaKoQ/svGvMM/XTU/pj+duqqllX4m4c97vUFxtdNei7b84+ozQYqvL6qZ2SnOc89L3H0Fj2wqjyQ5gj9X51KO9YUKssfhwbQBAu9horIh0lYm6oM7C/wkYs/UTKi4uWYE5dLSxi3YXltE/6SKQaVMJ6ql4DhPjtWKcd3HrwCVaB7494fh+2JsaaoXvKGcyTViULZWoOXTHq76h4ahFJ8nneRbP//Yfz+nRsexMWdWSoalEoFPKB/LvBReP+vf9QQTcst5NFeVQ1H8sz9cByhI2xIo+GWCRZiFWlTcDyXr1U9c0qjqcRFk2uwCL5FlgUnIXlQV+OFVU5eu9STPHjQkwGq5LMlrvovqmqTwI4QeS/qOrNCmmeo/UCwWDA87xiT+RC37jc6c6Id8Oiw81Yxeue6P0fCUSkMXZOc4Al++65dmia3/cHL8aiHQiFSoIh/SDj989dFGdfHnau6mC5wKsxo9QcE4bIA/IaZqTu23j7lZ95VvUaD/nAz/3jJz56NN8v4tjCWr+1MePkYcVKx0rbMzx2bZDb927gC6wALCwKkYJp7PqBh1wk3hpzttZhEYwPk3Os1vi2GpwYBCeMb445gYkq+rcDTSMEyr8SECt4LNYIlR8RaQn0VtVXo7ZtRjXW2hOJk5nDBFv0hKMs/HFe9shgKJTX/6a7f4gZvDuA8SJyz0V33f/NlOFXP7bvYP4CbLE9DzOQkzAqsR/m0WcBu9Qm0E/BDOQ0zFsPy/KNAAaLjbyJOQ/PVTOeh9EQ2VhE+pqqHlDTsV3j9gOYsXMGD3csyzBj+0UsYwllzdG+iOjjRmwAd3rYWAL4fT6/J5Khqm+d263dJe47JGEyex8dK2Ppjmmbqr4DvFk3LTnbL/L7WMYSwO95ySl+31kFP/9GZxGpJSItRaSXiJwt1opyI9Z20g77reZiqiGfYoUPH6nqgu2HCtd7Ir8PJRaTCGK/5VFDyiX4QpgH7OMYGksom734GfAkVpWbjRno60Ski4vgi4EHsHvo1yJST62yuQQzoq2xa7uzHKc5rTU4MvjG5W4C/pOAWSkAbv2qGUuHWVi+vXHEcxsx1bdop7cmwqzw4Zb/uQpT3l94hPvwMOMUAD6KRSe6aG8E1kIQcsURIzFP/DNVVbFexbZYFPMlsFLLpwgIJgr85Hld2zYc1rHVHwa1ay67Dubr3z/4dM7MVRuXYXnQXVixTm3MMA/B6LqpkVSdO+ZLX/jhNTlX9u/6DawAxQsEQ6ufmbVg6g+eemNKSTC4Q1VnV/HdvwU8H3jqvhL3XVrG2zYQDJYs2bLzX33v/cfdJ6JwIJA79hxVfSVRgVRINTht/Y63z3/2g/9h02jyIh77Io2QKy4ajuU8GqtqWW9lIHesd6C45H/pSf5LfDZ3M+wwFGG53pH+8RMTnsvqwN3k52CGKBtzsN4+lsYyzufWAwZi+egS7Dt9iSnABETkeqwt50HsO4/E+kTfxSL+XUd6f9Xg+CA4Yby3OW//Pxpn1/pWSDXo8zzPMzGXIPA937jcF6rax+kKt+4PxqZGhdfYXkC2RkyvcuvkTcB/jzTVcaxxMot+wBbGZI7Qi3AL4wgsSv04QaHKdjEN0tZYIcVeMQWOc4GRYm0fhRgNehDLx/URkcVYpWqJiBRs++s938iplfG3QDDo93leiogUjxnQ7ZqdB/Lf6f7zvz6dl194Frbwfw58E4sOKh2Xqob2Pv6LbunJSblEJP/9Pq/9Nwb3bHFOl7Zd1+7Kq077Sri1pIGqNohRXFkGv8+X3K5hvXOBLu5CPK6PP57Xt//3+3ZISvbHF73xRHxDWzTYparPVvVFVXWH+733YL9Nlrq2Fv/4iaGmSf47fj28x/zv9et4TkkgOEBECrJTk/8BPO4fP/GoCyfEhCb6Ah9j11E2J8BYAjgWYIqjqAZiFc9dgV4ishBjSvKAnwN/HZ6TlX935+bjhubU/kuSSGZ+MHTo0FVDH/J58njapBnHTUO0BtWH/1v3CjD1pjP7PDyoXfOfXNmv69qs9NQVwNu+cbknfVDy8YTaNJY22LU80z29HGtZSw079C64OYQxkPtOysFG4aRGmAAicgcm/fb6Ebx3KJbjqnLhcjx5X1WdHPGch3k6jTHn4SMtn4NZF8sjNQOWPXzdqNG3nX/Gj2MVUYRCWrR6x57FXf7v0RuwSHc0FqmWYpTdtojH3sBT9/XCEuDp0fsC01pU5a7km341AavcTY36NxsrJDoH2NmvddMWU//vputSk5MSOkD5xSVrs757/7UYnXgsH8Ho5wp/fn1/n8gH8WhrhyLg1/7xEx9IdNxhiFMzcu9L04h+RDFhiO5YG8pVwAFV/Vt19lvFZ3oYU9AYy0H3wM79FD2x2pzh4xGMpg43rwcwh3MRkDmgbq0fvndW9ws9SPNHtNqEVIs8kZ3AwLRJM+LqBNfgxEBMlakZVk8xFouiTu5ifALhcvBXYQHFVvfcCEwV7cuI7S7EWvA2nozjjMbJjjDBjEiTw32TiAzAcoNvVtPL3wgMEJGmqroFyip1P3HRw21EKOurqcx8JCK1/Z7X84Yhvb4fr+LQ8yS1faN6XZ+4+YrWNz/xSgOsp2+jO85MbLFtjNG1tZZt3Xl9x0Y5qZ4XOyIUkYwDRUW/9URSQ6pCuZB8MuZt+TDKrQFQvGLb7s99Pu9KEv+egYyU5PdPVAFIqt+3c/udVxdlJifFNZjGhMvhSF+twqTyXsIqcr/Q8txlWHw9AyuSOWqlG/d7n4cZplex/HJ9TpKxhDL1qFVi02W64ShXoLEHOW+c2XW4X6RWZB4bwDPPvYmITOIwxTdqcGzhirp6Y4xWFtbm9LUxllDWCjUDEzR4yd1PS7BJRAsjzscplcc82UU/YKXTOSIJ+MQoOL67JbZwVUsOyv0AX2JRYzRWYovxEGc8I993oOjJXx/KSk9N2LqgkNw4O/NXmIh6DxG5WkTGYd7jJViesjGQ2SS7dnfPk4TnvlZKSlar+tl5WLXcLozq3Yu1wbwC/At4FvjjgcKiR5N8vseIGIUVA6XYKLDjChHJEZFLi4Ohvgt37L2N2H2tBEKh4heWrF+SdP8z1XaW1Ka+5GHVy6sxg1H20ZjBzMSi+6MtJKuPGeetwHsYHduQw7jmjidUNeg88UkYXdXgDz1b107z+bKjjWUYrrq3X+GYYR1O4KHWoDJ6YuO68jC26GtJk7ugYitGzaI2YKAA6ygI45QymKdChLkLi5zSKZeMiwtn0BI2uyfAakyKKXqqRybWYvE2NjaqLjBLy/v1wn2bceGJ+HJqZdTB2jWKMENRhOXcCt0jCODzedWJiKU0GAIbybUTO097ogphmlH+G/4GK/boQOVy9QJgvG9c7lGL3Mc9WIukB2BswefAijOfelcDuWP3AE9gC4O6h/g97/4bX5/1MVbZ2xRjCqpTFbgK+46zgctFZL7zTgWjgzMw1iIj/i6q/C5tMRr2E7XZfoMwZyeeGtFJg7sHZovI4oH1av/Fk4StCkhqskjtzDsCuWNfAqb5x0/8SufLTjW4tq4ulI/ry+YUyc+dJMzGBA3CE3bC+rLhiVAHOAIG8njhVIgw8zCKscqIQETa46iMBCXZceEW5EVUjjJrAQfVBjS/6v6+SERaJPl9fV79YukFUsUCrKqB3q2aTFHVB1T1L6r6LzWB7klYYjuAeZZXzV61cWswFEpsHITVG/fse9q1TyxW1R0xqOcytR/fuNx8LB/7UHEgcMi1HZRiPabX+cbl/qGK03NEEBNAGABciXnKL6jq8jCl4h8/8T3MYxwFfB+4HmjgHz/xwdJgaC5W2TkM+E48yjsK6zDjVYJp+4ZltTzKI8xdHIFwsxgGYIb/LWcsB2DKLFPcOT0loaoH+9ertV7sHFSCpKfib90UX/NGqV52rXHYgr0zkDv2R4HcsdVmd2pw1OiL9dOGtVOz+RobTOeAhqnZJEwvt57YoHuoiTArIQ87jtoY/RgTrmhnEBaJHDiKz1uGVRfWjthPLSDftZ80xhbfAUk+76yVD/6kX9O6tftKFc5FMKShCZ/Mm/KdcWVjp5pjhrkH5iEVYZHPkiemfbH5rC5tfoVp6cZCvieSaG5nGBUE2H3jcvNF5Hcpft+6DX++e0r9WulFvnG5x4XuccUwnbAFYCNWIh7TifGPn6iY0zAz+jVV3SAi9wM/AO4Skcc19uzH8PYlIrIRK3z5EqtyDo8rCxvM3VjEmYqdo+p8n2RMY9aP9agWiUg/zNjHmyZzqmGGiBRg56AMkp6Kr2kDpFy/NJVyFuL32KI9/kQd5NcVYqIkrSkfqAAuh3lSDugUgapuEpEtwCC1AQLLsShzFmYwa4mInAp53pMeYToPYz8mhB0TYtMzhmMScXuP8vNKMaPZU0QaiUhvjMocgUVoKVgUOn7FA7enN8rOHOiJpCdKsapqwe5D+VO/+9/XBonIE8C/sUHVI7Ho+SPgOSzf9NxLc5f8we9538Go0gr9RaXBYPGug/mvuu2rQiwB9sbFgeD2hrf+fsdxNJYtsQq31ljkNe1IIv4wXHvIn7F8xt3ReeQYWAl0cLT6Psx4lrW0OEcoSDVpWbeQXY61FE1xxrIP5aLwp4OxBNOt3U1UlOlrWC/SWEYjQ1V/HsgdW+2xdTU4YvQHFoaZCle38bU3mA5zsOHnTbH1ub2IJDlWrZijSLEcS5wKESZYni4mTy0iDbB+yQ8SRR5VwUVEDbAIshmm8foBpuu4HTPGZbMigxPGp6nNq4tL66kqoZAG3l+yev2Vjz6/H6Py9mOG8FOsWGSbxm66fTo4YfyXwN3ABZhhnbdi2+5/9sn9e0pINUPH5cYaeROJEirTFU04ThqUrhBmEJZvnnMsS72dkXoKOxc3i427+jhOXnMLpgxSB4syz8B6XlMoz4MfwlqOtiX6XNeOchYmYLHcPdcbM8JvaGUN31MWaZNmaOGYYRdhLUsZQLKkJkOCXliAoKrvkw07fnueyO8xAf1Tokn8qwS3jjXA+njDyMAG1p9SefGTAcccTccCo5ew+7Y9JlQSpmWrWg+PO04Vg7mFGAOCXfHNSEwp57CMgDOQOZgBaYwV7uzHjMm8gV3aB/5yxy1n9+vU7o69Bw7liMjHwZmTH/ANGb0CYNrydRef0a6Fl6jxXkSYvWbjxov/9Mxj2IilhWrDnlMwqvJsYL7EmOMI4BuX+yVwQ+RzPYHQLx/rgc2TfKOKQphYE0uaYhHtMYOIZGDecTPsey6vZoHOYcEt1G+KzfW8EmgkIq9olOydWj/KKizK/FREgtjvnEpFg5lFAoiJz3cH3lM3QcFVYHfgNDOWYaRNmrG0cMywbpg05E0kJWVh9HRcisTveUmd62fVxopRhorNO12pR6nvXIMKGIhJXUbWIWTzNc5fRkNVN4vIZswpX4wxfpEG86SL0Z90gxmcOdmbdP/dLTxPxgRnTm6CScpN8Q+9MgMTH59VnUimCgO5BPgwTIUEZ04erKrPBoKhFCC5Tu1MVHVsSPW6pc/85e89xt6+5AfnDDhvUNtEs6YNQ9q3mK+qf498zn3OLBFZhkU/ncUGKG+q5mlZhBmnvpiGajxUoGRdBV46Vpl71HBJ+J5YPmEpJi143L1hVZ0rNnbteuAWEXlBnaBEBFZihVmfYVHm+ZixDLMQB7EIsxJce8WZ2IL1argAQ0R6YI7bG9FG+nSCm7l5F3BXIHfs+dgElLiFEyHVYHEwtAeb3pOCOQzni0gxNjzgtJzDeKpATAoujcrzaLOpMZjRmIOle9YCnpgc5SlT+HNSc5jBmZM7A2svHz7wj5cOGzAIu8mfDalu+e7lI3+IeWRrYr1XRDwRaSgivcXUIMZhrQCpmIF8TlUnq+ocrCglSUSa3HjROWcEg8H3RaRWkt+XHLE/vyeS2q5Z4x/9+uZr+6/Zmfd2oqHEAKXBYMncdVu2OGqwEtRGSU3BLoLBInKBy5clhEtuf4yNcGqa6BCoGGE2xijgo0qOu3PbCbgGK4h6WVXnnkjqyP3u/8Iio5tEpHPU63sx6rspVjmbjokKhGmbmDeZlIung7UmhY1ldyzCeuNo8rGnIKZWY5vSh2YtmY85KMOw8/oadt02wCTLzhORFiKJ+4drUBEuTzkAo/yjWZma/GUU3BozDXNoV2DO+iljME+aNF5w5uSGWNRShxh0UTAYyvf5vG6+IaPXQ4UIMnL01n6M696KeWop2ImtFfXIxPogD87+1x8u79Op7fU+z4tXocrGHbt2trnye0+vfugnF7Son93JK585WAGqWjTyoQmXfLR0bUNskVmBadVWaj9wx98Nq5xdBcyrqk3BGcuzMINViR50eZEhqvqK+3sYJlq+KNF+q/jM5hh9VIzlKY84b3wsICbePprysV4zwzk2MXmxBqr6kYhcgtH3j6nqMhG5Eqinqv+K2FcjLB++UCPEyMUGWffAjOVJz5McawRyx/4EuJ/YUoxFwAf+8RMvcZF3c2x4eQvs/lqPpUzqAx2xe2kV1hqx73gf++kOEekAdFbV12K8dhF2LVaXefrawK1l4bGI04A+GiFrerJwMinZW7EbOGZuxfMkef+h/HvriTyKGcgmWER1ADNO67BoshnWixfAaLjwYzcW1h/Eog4B/H06tX0wkbEEaNagft0Xf3v3H1vl1HoUm0NYh8rnqlBEvvvhkjUfOC+yKbagDHA8/Apgczjac97lQpd764eTdiNBPlBVt4jISmzo6jsxIsfoKtmmWHR92HD54kGYg/Gpqq4/kv0ca6jqQRF5HuvjHIKpQr3josDVQD9XmLUB03gNR0D7sIUfABcx98fy4Zsinu+C0c5fSWPp8AhG//3U/Z2K3S+lmJbpGCgbGbcOWOccvCbYORyJXWvrsDaw+sDFYsLYYSfxa1+4Eg0xR7sf8WsKsqihZOMhTM0e6NyqWZsrhg8aGJw5uRBY6BsyesvJOqiTaTBvJsEAVRFJSklO+gaWkwpinvBBzMgWu0eJ+ze80PmxBb+u+3/kIwgE8guL69TOqKI/XjWweeeeev5fPLTcCaX/DltUQpiB+hL4uW9c7ge2uSqmFLTZFfy0xfKPw53BWxn2xl2kOENElmJJ7S4iMitBUdPnGIXYHRsrFYmyPkxXmJOMyedVGy7v2Q+TGpyPTWc5pebwuQq6N7HFpT9GEb6lNoVmK9b+EcK+eyvMadiP9W+FBfabYBRsGQXmaN5eWJ/lwRP3jU4sXB/srwK5Y/+BTdHpgFWmP+cfPzGmg+WugfA1PRNjd1ph14oPM57FWEQ6UKw3dgWw9VTolztF0BVT56rUX+6i+VROgcrPUxGqWtqldfOZf7/ru/8Z1K3j8JCGgqr6XRFJCc6cPA24+WQYzpNJyR6iavUcUoZffU0opAexqLIU84wTPWJuE76JgzMnv4RphMbNxZQGgofqjxp7S35RcQZWQLNrUNvmB3552QhvVI/2W33jcqtVPehymx2w8uiY3riItMYiuz0YBVpJlMHRkldgU1l2RTyfBIxV1SfFVJBaacScyCqOzY/RkN2x0TrzT4cowRXmDMd+1+ndGmQHfjq467fPbtWow+q9B9ss2blv1uq9B+/585xldYEfYRFUKTaJJvK8d8QW/zdinfMaxIe7rlthjkom5YIjWZhDuRKjbL+yTkhVcKzHtdj1VcmJdS1aI1T1pRN+cKcBgjMne8AbwWDoHJ+vEiMYwNbLnr4ho496dN/h4GQazNVYJJYIu31DRkdP4T7azx2M9UfGM9ZFwJ99Q0b/3BmknIhHA2xB2BXx2FlVRaWLcpphxrMZVoS0EtjiWiR8VDZepVH7aIMVD0yOWvi/DfwHS5LvVtWElKyjj9tjkdp2rBjhtFrYRKQVcP63+7Rv95eR/b8HJCX5vFSAQChUAARfX7H55mtenv5d4P+AzyOjHpdX6o9FljVFF0cBV0TVyj3CRVce5SL4K4G1egLmhp5KEJNUTFPVaXFebwu0qa6D+3VDcObkCzChl3jTjkqBJ3xDRn//xB3VyaVkH8VkuWLOhMQM12PH+kN9Q0bPCs6cPAGrqo02msVY3vN3UKYKtJWI/h8xvdOw8eyM0a4BnPF0j92RRs3RWxuBjWKyeW0x45fqcporVXW+iKxwz18jInPd8+Ec6FpXBDSUijmRUsyIN6EyZVsB7v2DMA/tfVXdWY1TdspBVdc/ddmQz6/p2uovYUMZht/z0gEu6dBsYs+GdT7OSk2eN2399khj2R47xzXG8hjA5X0XA4vdtd0CM56ZWGFeEywHvxy7nqs1izOQO7YFll7Z7B8/8ZT+nYITxnvYGLieQPHctZs/wtaGlyttO3OyH+j7xM9v7fnup/NPiRmPpyh+QnxjCbbmfTM4c/KPfUNGnzBm7GRGmBlYzqwllZvvA1iOpYdvyOi84/DZAtwC5GKFIuGc3X+Ae31DRh9WxCUitSk3ojmUe9phIxqeNBKMel9dyinb/ThvHCvQOAPLFc3S8qZ6P0bNfqmqK91z12MG9DxVnRjn+LIxQ5mNRZRrD+f7nYoI5I79m6p+x7EAlRBxXQdF5FPgd0n3P7McO69vxaLJanDsEFVx2w5b/PxYMd58YFWs9p1A7thLgT9gdG84R/86cLd//MRTzsAEJ4wfivW5ZmA5yWAwFPL25hfNq18rfVRYntKtOXdhjIe/NBAUn89L8kQ+Br7nGzJ6Q7zP+DoiOHPyOiKK9uKgEGjrGzI6oZrXscRJM5gAwZmT6wFPY4o4YQoyCauQuv54nwh3Ebdyn7nRN2T0MWnOdhRsHSoa0SysKCXSiO5zlKyHLS4dMY98A5bvTMdaPLZjlauHnJG9+MVbr513Rb8uY3cfzL8q2e8rXLpl16eD2jX/mW9cbmSOMw0rPmqDScctiTbapysCuWPziCNMEAsh1cJPNu788JyJ749Tm0NYgxOEqIrbHtj9IFj64TOcHF8gd+z3gT9SmXUKYgVf/fzjJ64/MUddNYITxveiXIawAtQGJC8FBvjG5QaCMyc/jql6RW8b/m69fUNG17SXOARnTv4Su1YSoRSod7gBztHgpBrMMIIzJ7fAGqYFmO0bMjqmWMHpDOdx16diPjSNqHwoFl23w4xnCrAG81xbYdWfC2bf+52f9m7V5Fc+EXVVuYRCoSLP84LAaP+37v0I6/nsQTV7Pk83BHLHFlOZmUgINdnCS/3jJ354nA6rBlXA5dBzKE9LNAOKhrZosOqjsef9K3w9x0AQ+Mg/fuL5J+hQq0Rwwvh3MSo2nuzgIeAG2nXdiBnWeOmnIDDZN2T0mGN/lKcngjMn/whjGuKdM4CpviGjzzpBhwScIgbz6wqX86lPeRQanhgRNp6lGGXcAqMf0n8yanDbB64Zebdn762EUEgLRz/63M/fXLBiCRaVfiUrQAO5Y9ditN3hQLEm/VNm0f26w1XcdvnflcN+cUn7Zucn+32JlOKLgHb+8RNPWh9eGMEJ48PC/gl7uoEPaNd1MzAWS7HEQxHQyDdk9Cmdrz1RCM6cXBvrs47srY5EAXC+b8joSiMDjydOupbs1xlq+pyb3QMoqzoMG88m7v9FGG2cdvOZfa+TBDepokn//fborvV/8LtHjuexnwJ4hMRFY7EgWA6zBqcIXC55ZiB3bAmJDQolwVDwb58tv/EekS+pKCgf6/+JXjvq/1/cq2PDSbdeS6LhDAB78wu7BPbub5dTJyvxhuYcN6dGKg8A35DRB4IzJw/F2sKysAIwML1oAcb9f3v379pUFIZx/GnuqW2xrT9QtJs6ODp0DYLFwUEXO0gRSgZx8Q8QHa5SziJVEXQp4hLvpINOtm5O3ZxUEBxUEHHSQtHYSm7j8N7Qn0mOFZMb+X4gUEKGW8LluTnnfd/T7rCUCMzcyaoOv8saw+tLWLsl7e/vdQeOjuw7kr23pahQcHt2Dpxpy8V21gNJF2UFU62e8tdiSSWfWjbwu0LPyujI3teyYR7177HWgb9r0xOndvVGheutrnmov++thgedWhewONlgFmSi4vi7dP7JYdlRjGdlW1Pzkh526pc4gZlzWVvJgqSFtOw/qMkxTWv8SYB0JeeTSjWeLEqakd1My7JKzGZP8jXZXErkzyPZRKuhRh8o9PSsnDh0cC4nAza+pWX/QnZKTsM9TBcV7iqKhiWNqsn/Jis6pFJ2g6g4XpUdBLBpFm8ncPJAF4lKcb0vtJVtzZPtNs4ni84n52WFIxOSprR6HuZWfsoKCZA/s7KWk0ZV3D8k3XQ+yUNY1l2W7aVtZVlWBfxMdiDyolbb1zaqyNpNkHMEZve5rcY3qWRLW7fadC254Hzy1fnkufOJl+1tVrR+6bWWvTflfNL2fQ+05nySytrLvmj98mwq++4ey/ascyMqxa9kVbKfZcupv2QPZUuys0VPRqU4zdrVjkv6pPXLrkvZ62pUHH/azmvH9lAl22XSsu+TLSsek7WlrFWRNCfpXFSKczVAvZ2q8eSYpCuyAp+a7FiwG4Rl/lXjyT7ZKRUXZMUebyTdcz552dELayKb9DMmuyeXJc1Gpfjjps/ZlJ/TsnNHB2U9qPfb2XiPv0NgdqG07AckXZN0SbZ/UpCF5bSkO1Ep/i+GEwBAnhCYXSwt+x2yKT6ppPcEJQD8OwQmAAABKPoBACAAgQkAQAACEwCAAAQmAAABCEwAAAIQmAAABCAwAQAIQGACABCAwAQAIACBCQBAAAITAIAABCYAAAEITAAAAhCYAAAEIDABAAhAYAIAEIDABAAgAIEJAEAAAhMAgAAEJgAAAQhMAAACEJgAAAQgMAEACEBgAgAQ4DdSgFSA8qkYSAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/home/petri/Kurssit/AI/AI_Book/_build/jupyter_execute/blockdiag_1_0.png" } }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import networkx as nx\n", "\n", "G = nx.random_geometric_graph(200, 0.125)\n", "# position is stored as node attribute data for random_geometric_graph\n", "pos = nx.get_node_attributes(G, 'pos')\n", "\n", "# find node near center (0.5,0.5)\n", "dmin = 1\n", "ncenter = 0\n", "for n in pos:\n", " x, y = pos[n]\n", " d = (x - 0.5)**2 + (y - 0.5)**2\n", " if d < dmin:\n", " ncenter = n\n", " dmin = d\n", "\n", "# color by path length from node near center\n", "p = dict(nx.single_source_shortest_path_length(G, ncenter))\n", "\n", "plt.figure(figsize=(8, 8))\n", "nx.draw_networkx_edges(G, pos, nodelist=[ncenter], alpha=0.4)\n", "nx.draw_networkx_nodes(G, pos, nodelist=list(p.keys()),\n", " node_size=80,\n", " node_color=list(p.values()),\n", " cmap=plt.cm.Reds_r)\n", "\n", "plt.xlim(-0.05, 1.05)\n", "plt.ylim(-0.05, 1.05)\n", "plt.axis('off')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "c6d9b80d", "metadata": {}, "source": [ "A graph is simply a structure which has nodes (also called as vertices) which are connected to each other with edges (lines). The edges can be unidirectional (arrows) or bi-directional (lines). A graph with unidirectional edges is called as directed graph, whereas a graph containing only bi-directional edges is called undirected graph. If the graph contains cycles (or loops), it is said to be a cyclic graph. If it has no cycles, the graph is acyclic graph. If the graph contains a path between each nodes, the graph is said to be connected, otherwise it contains isolated sections and it is called disconnected.\n", "Acyclic connected graph is called as tree and acyclic disconnected graph as forest.\n", "\n", "Examples of different graphs are shown in Figures {numref}`fig:nondiag_graph` - {numref}`fig:treegraph`.\n", "\n", "Mathematically, a graph $G$ is expressed as a set of Edges $E$ and vertices $V$:\n", "\n", "$$\n", " G=(V,E)\n", "$$ (eq:graph)\n", "\n", "```{figure} figures/graafi_nondirectional.svg\n", "---\n", "width: 600px\n", "align: center\n", "name: fig:nondiag_graph\n", "---\n", "\n", "An example of cyclic undirected graph.\n", "```\n", "\n", "\n", "```{figure} figures/graafi_cyclic.svg\n", "---\n", "width: 300px\n", "align: center\n", "name: fig:cyclicraph\n", "---\n", "\n", "An example of a directed cyclic graph.\n", "```\n", "\n", "\n", "```{figure} figures/graafi_DAG.svg\n", "---\n", "width: 300px\n", "align: center\n", "name: fig:treegraph\n", "---\n", "\n", "An example of a directed a-cyclic graph (DAG), a directed tree.\n", "```" ] }, { "cell_type": "code", "execution_count": 2, "id": "9aff45be", "metadata": { "caption": "A random graph", "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwuklEQVR4nO3deXjU1dn/8ffMN2SbgBAKLlCMBEgMpqBFcKmFB9FSFov0UdHiArgXF1yLiBCLKxUXKBXbQnz08dFWkCoCFWpVtLTKr6JhFRMBpQqYsGVCMsnM/P44BAlktmSS+c7M53VdcwWG8z0cEHPP2e7b4ff7/YiIiCQJZ6wHICIi0poU+EREJKko8ImISFJR4BMRkaSiwCciIklFgU9ERJKKAp+IiCQVBT4REUkqCnwiIpJUFPhERCSpKPCJiEhSUeATEZGkosAnIiJJRYFPRESSigKfiIgkFQU+ERFJKgp8IiKSVBT4REQkqSjwiYhIUkmJ9QBERCSKfHXg3grearDSwZUDTn2rP5L+NkRE4l1NOZTOh7IFUFkKzjaABXjB54GsHtB9HOROgLTsWI825hx+v98f60GIiEgTeD1QUgSbZwEO8B4M3NbKAPyQdwcUTgMrtbVGaTsKfCIi8ci9Hd4eAlU7wFsV/nNWJmR2gcErwdWt5cZnYwp8IiLxxr0dlvcDTwX4vZE/77AgNRuGrknK4KdTnSIi8cTrMTO9pgY9MM95Kkw/vtroji8OKPCJiMSTkiKzvNnUoFfP7zX9lBRFZ1xxRIFPRCRe1JSbgyxH7OnNeQv63Q9pV8M1zzb+2IOLwPELWLnuqF/wVsGmJ6CmouXGbEMKfCIi8aJ0PuBo8NZJHeD+UTB+YIBHdsKf/wUntg/UqQNK/xi9McYBBT4RkXhRtuCYKwujz4RR/aBjVuOP/LIYHrscUgPd2vYehLLiaI7S9hT4RETiga/OXE6PwJ//BWkpMKxviIaVn5v+k4QCn4hIPHBvPZSRJTwHDsJ9r8DTV4XR2NHG9J8kFPhEROKBtxqThiw80xfClT+CnE5hNHZYh/pPDsrVKSISD6x0IPwrDH9bD19VwNyV5ue798Olz8C9I82rAb/3UP/JQYFPRCQeuHIavWxe5zUvr8+8qj2QYsHf7oPaI+LkmVNh1lj4aZ9G+vbXmv6ThAKfiEg8cKZAVi7s39jg7RmLoWjRdz9/8QOYNhqm/7zh45YTOrggq7GJXVaPpCpdpFydIiLxYsNMKJkWvApDpKwMKHwQCu6KXp82p8MtIiLxIncCEO25ih9yx0e5T3tT4BMRiRdp2aaenpUZnf6sTMi/M+mK02qpU0Qknng9sPQ0qCxrXqJqhwVZ3WH4+ojuByYCzfhEROKJlWqKyKZmm+DVFPX1+AavTLqgBwp8IiLxx9XNFJHN6h75sqeVaZ5L0iK0oMAnIhKfXN1g2DrIux2sdGp9IWZuVqa5pJ4/ySxvJmnQA+3xiYjEv5oKnr2nP1ec5aGdY6fJvemwzB6gv9bc0+s+zpzeTLKDLI1R4BMRiXN79+6lW7dufP3117gy0kzCaW+1meG5cpLqcno49LchIhLnli9fzo9//GNcLpd5o22P2A7I5rTHJyIS515//XUuuuiiWA8jbmipU0QkjtXW1nL88cezbt06TjrppFgPJy5oxiciEsfef/99cnNzFfQioMAnIhLH3njjDUaOPLrAngSjwCciEqf8fj+vv/66Al+EFPhEROLUpk2bqKmpoW/fvrEeSlxR4BMRiVP1y5wOhyPWQ4krCnwiInFK1xiaRtcZRETi0Lfffktubi47d+4kPT091sOJK8rcIiISD3x1DVKRLVu6iiFDhijoNYFmfCIidlVTDqXzoWwBVJYeqp1nAV7qPFVUcgLtz5gEuROUfDoCCnwiInbj9UBJEWyeBTjAezBwWysD8EPeHVA4zRSqlaAU+ERE7MS9Hd4eAlU7wFsV/nNWJmR2MVXVk7jWXjgU+ERE7MK9HZb3A0+FqaUXKYcFqdlJXV09HLrOICJiB16Pmek1NeiBec5TYfrx1UZ3fAlEgU9ExA5KiszyZlODXj2/1/RTUhSdcSUgLXWKiMRaTTks7mquKgQwdi78bT24q+GE9nDPCLj2v4L0aaXDqB067dkI3eMTkcRz1J03XDngtPG3u9L5QPC0Y5Mvgj9eB2ltYNN/YNAMOD0HfnhKoCccUPpHKLg7yoONfzb+lyAiEoEgd97weSCrB3QfZ887b2ULgl9ZAHp3/e7HDsDhgNKdQQKf9yCUFSvwNUJLnSIS3+L9zpuvDv7kMsE5hJsXQPF7cNBjZnvvTYWsYIlbnKlwqdves90YUOATkfiVCHfeDnwOy/pCnTus5l4frN4C72yAe0dCm2AxzXLBsLXQtkc0RpowdKpTROJT/Z23yrLIgh6Y9pVl5nn39pYZX9hjqcYsyYbHcsKP8uCrCvjdyhCNHVbQAzPJSvNfEYk/0b7zNnz9oT3B1uF2u9myZQubNm1iV9k/uL5rFekRfjeu80HprhCN/F5zuEcaUOATkfjTEnfe+syIztgO8fl8fPnll2zevPmY1+7du+nRowd5eXmcmteTNiEmfLv2wdsbYMTpkJEKK9fB/62G//tliEH4a82JVmlAe3wiEl/CuPM2aAb883NIObSZ0yUbNv8mSJ/NuPN24MCBRoPbli1baN++PXl5ece8Tj75ZCzriGi3pAD2bwz4e+zeD//9NHyyHXw+OPl7cOtP4LrBIQbXrgBGrI/4z5ToNOMTkfgSxp03gDlXh7jg3UDwO29er5dt27Y1CGybNm1i8+bN7Nu3j549ex4OahdddBH5+fn06tWLtm3bhvfbdx8HJdMCnkjt1A7enRrun+UQK8P0K8dQ4BOR+BLGnbeIHbrztvek6xoEtfpXaWkpnTp1OhzcevfuzejRo8nLy6Nr1644nc08J5g7AUoeiM6f5TA/5I6Pcp+JQUudIhI/wrzzNmgGrP8K/H7IOxEeuhQGFQTv2lMHnW9x0aNn/jFLkz179sTlckXxD9KItVNg81ORn1BtjJUJ+ZOivm+ZKBT4RCR+hHnn7V+fQ0EXSE2Bl1fDxOdh7cOQe3zgZ3zOTBzD1uJo1zO6Yw6X1wNLTzPXLJpzaMdhQVb3Vj+pGk90j09E4keYd94G9IC2GSav5dU/hnN7wdK1wZ9xOlNw+GqiMswmsVLNhfrUbBO8msCH0zw/eKWCXhAKfCISP6x0IPLZkAOz7BmUHe68ubqZIrJZ3c1yZQTqSOOL3Q62nbow9tlobE6BT0TihysnZIHVvW7466dQ7YE6L/zvB/DeZhjaJ0Tfdrnz5uoGw9ZB3u0mEFsZwdtbmWClk9L7LlamPsVPRl/Hnj17WmWo8Up7fCISX8K48zZspindYzkh/0T49SVwQWGIfu14562mwlyzKCuGys/B0cYsg/q9JlAfrjgx/vAdxEmTJvHJJ5+wfPlyUlNtkITbhhT4RCS+bJgZ9M5bk1gZUPggFNwVvT6jLcwag16vl4svvpjOnTvz+9//Hocj9J3HZKPAJyJxxV9djnfRiaQQfMkzIglWrbyyspLzzjuPyy+/nHvuuSfWw7Ed7fGJSNzYsGED5w+7hOLVHfA6onQQxcqE/DsTJugBZGVl8cYbbzB79mwWLVoU6+HYjgKfiNheZWUl99xzDwMHDuTiiy/mmt98gZX1/SYf+z/MYZm6fIXTojNQG+natSt/+ctfuOGGG/joo49iPRxbUeATEdvy+/28+uqrFBQU8PXXX1NSUsItt9xCSlpms++84bAS/s7bGWecwR/+8AdGjRrF9u0xrjtoI9rjExFb2rJlCxMnTmTHjh389re/ZeDAgcc2SoQK7K1g1qxZFBcX8/7779OuXbtYDyfmNOMTEVupqqpi6tSpnH322VxwwQV8/PHHjQc9aPKdN/InmZReSRD0wFxxOOeccxgzZgx1dXWxHk7MacYnIrbxxhtvcOutt9K/f3+eeOIJunbtGv7DTbjzlkxqa2sZPnw4eXl5zJ49O9bDiSkFPhGJuS+++ILbbruNzZs3M2fOHC644ILmdRjmnbdks2/fPs455xxuvPFGbrnlllgPJ2a01CkikfHVmSoJe9eZr76mL53V1NQwY8YMzjzzTM466yw+/fTT5gc9MEGubQ9of5r5qqAHwHHHHcebb77JI488wptvvhnr4cSM/jWISGg15abyedkCqCw9dArSArymNt7hZcQJYS8j/vWvf2XixIn07t2bNWvWkJOT05J/AjkkJyeHRYsWcdFFF7FixQr69AmVxDTxaKlTRALzeqCkCDbPAhzB04RZGYAf8u4w9+KsxvNEfvnll0yaNIl///vfzJ49m+HDh7fI0CW4V155hbvvvpt//etfnHjiibEeTqvSUqeINM693RRG3fyU2SsLlRvTe9C02/yUec7d8N6Yx+Ph8ccf5/TTT6d3796sX79eQS+GLrvsMm644QZGjhyJ2x28sG+i0YxPRI7l3g7L+4GnomnVwOsvhw9dA65uvPPOO9x8882cfPLJzJ49mx49ekR/zBIxv9/PNddcw/79+1m4cCFOZ4C5UIIdFlLgE5GGvB4zY6ssa1rQq+ewqEvvxviFA3jnvQ946qmnuPjii1UtwGZqamq48MILGTBgAI8//vgRvxD9fV27UOATkYbWTjm0vBlBJpQA3DXwz71nc9b1K3C5XM0fm7SI8vJyzj77bO6++26uG3911Pd17UaBT0S+U1MOi7uaJa1GZI1v+PODHrj5Aph9dZA+E6zkT6LasmULY0aew3tFabjYk9Ap4HS4RUS+UzofCLwUWTn/u9c3cyEjFS7pH6pTh8moIrbW86Q0Vk+vI80TYd5TMO0ry8y+sNv+ybAV+ETkO2ULwq5svvBD6NwOzssP0dB70KQRE/vyeuDtIaT6D5DS1EpPfq85DPX2EPBFsUhwC1DgExHDV2cOMYTp+VVw1XkQ1lmVyuZleJEWVlJkKlw05zATmOerdpj+bEyBT0QM99aw69Jt2w3vboSrzwuzb0cb07/YT025OcgSZHlz4w4Y/BAcdy30uANeC1bX1lsFm54wScNtSoFPRAxvNea4emgvvA8/yoNTOofZt8MKeGBGYizEvm6dF342C0acDhXPwXMTYOzv4LOvg3Vq731dBT4RMax0ILylrv95P4LZHpglMCu9ScOSFhZiX3fTf+A/e2DST8FywuDecG5P8+EnIJvv6yrwiYjhygnrUMI/PoMde+CSARH07a81/Yu9RLivW88PrPsqRCMb7+sq8ImI4UyBrNyQzZ5fBaP7QdsQxc4byFJpIFsKY18370RzenfmEqitg7c+Nfu7VTUh+rbxvq7+JYrId7qPg5JpQZe+5k2IsE8rw/Qr9hPGvm6bFFh8B9zyPDy2BPqdApeeBWmhooeN93U14xOR7+ROwCxkRZMfcseHbiatL8x93R90g3enQvk8+OuvoGwX9A+1OGDjfV0FPhH5Tlq2ybtoZUanPysT8u9UujK7CnNf99PtUO0xy5u/eRO+3gvX/DjEQzbe11XgE5GGCqeZvIuOpqbwOMRhmX4Kp0VnXBJ9Ye7rvvA+nPhL6HwT/G0drPgVpIW68mnjfV0lqRaRY0W5Hp/Y2IaZIfd1I2ZlQOGDUHBX9PqMIs34RORYrm4maGV1j3zZ08o0zynoxYck3NdV4BORxrm6wbB1kHe7OaRghbi/YGWadvmTYPh6Bb14kYT7ulrqFJHQaipMCqqyYnMx2dHGLGf6veYQw+Fq3ONt/Q1PAvB6YOlpprRQcxJVOywz2x++Puy8r7GgwCcikfHVmYvJ3mozw3Pl2PYQg0QgifZ1FfhERMRwbzf19KoiLEarCuwiIhKXkmRfVzM+ERE5VoB9Xbd7P5npbXC07Rm3+7oKfCIiEtwR+7o/+/ll3P/IHziz/9mxHlWTaalTRESCc6ZA2x7Q/jRS2ufzxdYvYz2iZlHgExGRsJ1yyils3bo11sNoFgU+EREJW05OjgKfiIgkDwU+ERFJKjk5OXzxxRexHkaz6FSniIiErbKyks6dO+N2u3E4HLEeTpNoxiciImHLysrC5XKxa9euWA+lyRT4REQkIvG+z6fAJyIiEYn3fT4FPhERiUi83+VT4BMRkYhoqVNERJKKljpFRCSpxPuMT/f4REQkIlVVVXTs2BG3243TGX/zp/gbsYiIxFRmZibt2rVj586dsR5KkyjwiYhIxOJ5n0+BT0REIhbPVxoU+EREJGLxfMBFgU9ERCKmwCciIkklJyeHbVtL4cDnsHed+eqri/WwwqLrDCIiEr6aciidT82meTgqS0lNdwEW4AWfB7J6QPdxkDsB0rJjPdpGKfCJiEhoXg+UFMHmWYADvAcDt7UyAD/k3QGF08BKba1RhkWBT0REgnNvh7eHQNUO8FaF/5yVCZldYPBKcHVrufFFSIFPREQCc2+H5f3AUwF+b+TPOyxIzYaha2wT/HS4RUREGuf1mJleU4MemOc8FaYfX210x9dECnwiItK4kiKzvNnUoFfP7zX9lBRFZ1zNpMAnIiLHqik3B1nC2NPb8g2kXwNj5wZp5K2CTU9ATUXUhthUCnwiInKs0vmAI6ymv1wAZ3YPp6UDSv/YnFFFhQKfiIgcq2xB8CsLh7y8Gtq74PzeYfTpPQhlxc0eWnMp8ImISEO+OqgsDdlsfxU88CrM+kUEfVfGPsOLAp+IiDTk3grONiGbTX0VJgyCrh0j6NvRxvQfQykx/d1FRMR+vNWYNGSBrd0KK9fBxw9H2LfDOtR/7CjwiYhIQ1Y6EPwKwzsbYeu30O1W8/PKavD6YMMO+PdDQR70ew/1HzvK3CIiIg356uBPLpN0OoCqGth/xNmX37wJW3fD78ZDp3ZB+namwqVucMZu3qUZn4iINORMgaxc2L8xYJPMNPOql5UO6akhgh6Y6g0xDHqgwCciIo3pPg5KpoV1pQFg+s/DaGRlmH5jTKc6RUTkWLkTgGjvhPkhd3yU+4ycAp+IiBwrLdvU07Myo9OflQn5d9qiOK0Ot4iISOO8Hlh6GlSWNS9RtcOCrO4wfH1Y9wNbmmZ8IiLSOCvVFJFNzTbBqynq6/ENXmmLoAcKfCIiEoyrGwxdg9/VnYO1EYYMK9PM9GxUhBYU+EREJBRXN1akzqL4n+3xO9PN6cxgrExzST1/klnetFHQA+3xiYhICD6fjzPPPJPJkyfz3yMHm9JCZcUm4bSjjVnO9HvBX2vu6XUfZ05v2uAgS2MU+EREJKg//elPPP7443z00Uc4HEfU6PPVmYTT3mozw3PlxPxyejgU+EREJKDa2lp69+7N3LlzGTJkSKyHExXa4xMRkYAWLFhAt27dEibogWZ8IiISwMGDB+nZsyeLFi2if//+sR5O1GjGJyIijZozZw4DBgxIqKAHmvGJiEgj9u7dS69evXj33Xc59dRTYz2cqLL/8ZvWEqenk0REWsLMmTMZOXJkwgU9SPYZX005lM6HsgVQWXoonY4FeE0BxsP3USbY9j6KiEi0ffPNN/Tu3ZuPP/6Ybt3sdfk8GpIz8Hk9UFIEm2cBjuD1pqwMwG+ylBdOM7nrREQS2MSJE0lNTWXWrFmxHkqLSL7A594Obw+Bqh3grQr/OSsTMruYRKs2S78jIhItZWVl9O/fn40bN9KpU6dYD6dFJFfgc2+H5f3AU9G0Ehv1WcZtlnBVRCRaxo4dS69evXjggQdiPZQWkzyBL0HrSomIRMunn37KhRdeyJYtW2jbtm2sh9NikuceX0mRWd5sTtAD83zVDtOfiEgCmTJlCpMnT07ooAfJMuOrKYfFXc1VhQC27oabF8DqLZDWBv67Pzx1JaQEqr1opcOoHTrtKSIJ4f3332fs2LFs3ryZtLS0WA+nRSXHjK90PuAI2uTmBdC5HXz9W1j7MLy7EeauCPaEw5TmEBGJc36/n8mTJ1NUVJTwQQ+SJfCVLQh+ZQH4Yjdcehakp8IJ7WFoH1i/I8gD3oOmHpWISJxbtmwZFRUVjB07NtZDaRWJH/h8deZyegi3D4WXV0NVDeyogGWfwNAfhHio8nPTv4hInPL5fEyePJmHHnoIywq0t5NYEj/wubeGdfryx/mw/itody10vQX6nQKj+oV4yNHG9C8iEqdefvllMjIy+NnPfhbrobSaxA983mpMGrLAfD4Y+hiMPhPc8+HbZ2GPG+79vxB9O6ygB2ZERGzBVwcHPoe968zXQytVHo+HqVOn8uijjzasrJ7gEj8Ls5UOBL/CUOGG7eUw8UJzojOtDYwbCPf/GR6/IsiDfu+h/kVEbCaMXMRrduZxesHJDBo0KMaDbV2JP+Nz5YCvNmiT77WFUzrB71ZCnRf2uuH5VfCD74fo219r+hcRsQuvB9ZOMVe4SqbB/o0m0NW5oW6/+eqrhf0b6Wst5k9XfGDaez2xHnmrSY57fEsKzH/8INZuhdtfhE+2geWEwb1h9tVw/HFBHmpXACPWR3WoIiJNplzEYUmOwLdhpvnkE+JKQ0SsDCh8EAruil6fIiJNpVzEYUv8pU4w9fSIdnz3Q+74KPcpItIEXo+Z6TU16IF5zlNh+gmxPRTvkiPwpWWbenpWZnT6szIh/06lKxMRe1Au4ogkR+ADU0Q2s4uZzjeHwzL9FE6LzrhERJqjptwU1T60pzfnLeh3P6RdDdc827Dp39ZB/l2QOQ7+awZs291If94q2PQE1FS0/NhjJHkCn5VqNm5Ts5sc/Pz1a+CDV6okkYjYw1G5iE/qAPePgvEDGzb79gCMfgp+fQlUzIN+3eGy2YE6TexcxMkT+MBs2A5dY+rpRbjsWe1N4ZsDmfh/8lHCb/yKSBw5Khfx6DNN1qmOWQ2bLfoIeneFSwaYnMTTR8Mn22HTfxrpM8FzESdX4AMTtIatg7zbzeVzKyN4eysTrHScp97B0NldKf7z260yTBGRkMLMRQwmJWOfIz6zu9Ih93jzfqMSOBdx8gU+MMuefR8y9fQKi8x9PGcqWC5IaWe+OlPN+4VFMGoHqf0e46WX/8w999zDhg0bYv0nEBEJOxcxQGU1HHfUQtdxGXAg0C2vBM5FnPgpy4JJy4aCu83LV2f+I3urzUzQlQPOhn89vXv35tFHH+Wyyy7jww8/JCMjxGxRRKQlhZGLuF5WOuw/KsjtPwhtA30bS+BcxMk542uMMwXa9oD2p5mvzsY/E4wfP57CwkJuv/321h2fiMjRwshFXK93V5OZqp67Gkp3mfcblcC5iBX4IuRwOHj22Wd5++23eeWVV2I9HBFJZo3kIq7zQrUHvD7zqvaY9y7uB+u+goUfmvcefM3kI84/KUDfCZyLODlSlrWAf//73wwdOpTVq1eTm5sb6+GISLI6Khfx9IVQtKhhk2mjYfrPYeU6mFgM276FAT2g+AbI6RSg3wTORazA1wyzZ8/m+eef54MPPiAtLS3WwxGRZKRcxBFT4GsGv9/P6NGjycnJ4cknn4z1cEQkGdVUULfwBFKIYn5NK92cek/QtIza42sGh8PBH//4R1577TVef/31WA9HRJJMRUUFY66+mT+saovXEaWDKEmQi1iBr5mys7N56aWXuO6669i+fXushyMiSWLFihX06dOH448/nqt/U4aV9X3lIg5TfC11hnHXLlYee+wx3njjDd555x1SUo4ak43HLSLxpaqqil/96le89tprLFiwgCFDhphfUD2+sNk/8NWUmySsZQtMah5nG8yFTS/4PJDVA7qPMzX3Yjg19/l8DBs2jB/+8Ic89NBDcTNuEYkfa9as4corr6Rv377MnTuXDh06NGygCuxhsW/g83pMTajNswBH8BNLVgbgNzX3CqeZlGQxsGvXLvr368vbTw+ku2cx8TJuEbG3uro6Hn30UZ555hmefvppLr/88sCNI/remQn4zJ5e4bSkqTpjz8AXr59a3NupWnIOVO0gM5LbDbEet4jY1pYtW7jqqqtwuVwUFxfTtWugVCtHqakwpYXKik3CaUcbs5zp95rL6YdXncYn3aqT/QJfvK5Tx+u4RcSW/H4/zz33HFOmTOGBBx5g4sSJOJ1NPI+ocwYN2CvweT2w9DSoLGta8KjnsEzNveHrW2fqHq/jFhFb+uabb5gwYQLffPMNL7zwAgUFBbEeUkKx13WGkiKzvNmc4AHm+aodpr/WEGTcNbUw4Tk4+VZoOwH6ToZlawP009rjFhHbWbRoEX379uX0009n9erVCnotwD4zvppyWNz1cBmMOW9B8XtQ8iVcfjYU32ia/XMLTH0V/t8XYDlh0KnwzFVwYodG+myN7ANHjfto7mqY+SZc82Po1hGWroXLfwsljwbJkZfgWRNE5Fj79+/ntttuY9WqVfzP//wP55xzTqyHlLDsM+MrnQ84Dv/0pA5w/ygYP7Bhsz1uuH4wbH0Ktj1takmNey5Qpw6zuduSjhr30VzpJjlsTidwOmHEGXBKJxO4A2uFcYuIbbz33nv06dOH1NRU1q5dq6DXwuwT+MoWNDh2O/pMGNUPOmY1bPbTvnDJAGiXCZlpMPEC+OCzAH16D5oTTS3pqHGHsnMffPZNkBpY0DrjFpGYq6mp4d5772XMmDHMnj2befPmkZWVFfpBaRZ7HOvx1ZlL3k3w3ibo3SVIg8rPTf8tcYIpwnHX1sEvfgtXnxekBla9lhy3iMRcSUkJY8eOpXv37nzyySd06hRo70OizR7fVd1bzSlGnyeixz7dboop/uWOwG2qquu4fEgftu9Jxefz4fP58Pv9Ufma87063vuVh6wwcsP6fHDl7yA1BeZcHcYfztHG/L207RHuX4eItIZmXg3w+Xw8+eSTPProozz++ONcc801OByBt0sk+uwR+LzVmHRe4fv8G/jp4/D0lXBefuB2qekZPDzjATwZvXA4HDidzoBfg/1aY19T3JvI/OdPoe5A0LH6/TDh92aZc+k90Cacv3WHFfDAjIi0siilINy2bRtXX301Xq+XDz/8kFNOOaXV/gjyHXsEPisdCP8Kw7bdMOQRmDoKrjwveNsUB/Qu/GHLzJxSjwd8IZvdNB827oCV90FGuFnJ/N5Dfy8iEjOB0n8dvTq1f6MpBlvyQKMpCP1+Py+88AJ33nknd911F3fddReW1cxKCtJk9gh8rhzwNSyiWOc1L6/PvKo9kGKZWdPgh2HihXDjkDD69tea/ltCI+M+2rbdMO9tSGsDJ9z83fvzJsAvzg3yYEuOW0RCa5A6MYzVl/qguPkp+PLPh1MQfvvtt9x4441s2rSJFStW0Ldv35YctYTBPvf4lhSYT02HTF8IRYsaNpk22lwcmL4IXEflwqycH6DfdgUwYn1Uh9rAUeOOmpYet4gEFqUUhH9Pn8nY6+9jzJgxPPTQQ6SnaxXHDuwT+DbMNEsFEVwNCMnKgMIHoeCu6PV5tBYYd3Wdkz1db+fEwU9ErU8RCVOUUhB6fQ62lVtsL1zKoMEXRHGA0lz2uceXOwGIdgz2m8zjLakFxp1iOfmva1/gF7/4BaWlTbvmISJNFKXUiZbTzynHpzKo47tRGphEi30CX1q22RS2MqPTn5Vpaky1dNqvFhh3ymn38tEnpeTn5zNgwABuuukm/vOf/0SnfxEJrKbcHGQJUg6tohIufhJc400O3pc+CNydw1cFm54wJYLENuwT+MCchMrsYtbHm8NhmX4Kp0VnXKG0wLjbtm3L1KlT2bx5M1lZWRQWFnLvvfdSUaH/gURaTIgUhAC/LIZUC3bOhf/9Jdy0ANZ/FewJpSC0G3sFPivVnIRKzW56EKmvazd4ZeuV9mnBcXfs2JGZM2fy6aefsnfvXnr16sWMGTOorKyM0uBF5LAQKQjd1bDwQ/j1JZCVDj/Kg4vOgBfeD9KnUhDajr0CH5girEPXmLp0kS4fWpnmuVgUc23hcXfp0oV58+axevVqNmzYQM+ePXnmmWeoqamJwuBFJJwUhJ99Y65V9Trxu/f6nBxqxsd3KQjFFuwX+MB88x+2DvJuN5e4rYzg7a1M0y5/kiniGqsK5q0w7p49e/LSSy+xfPly3nrrLfLy8iguLsbrbWYNQ5FkV586MYjKamh31P/Wx2XAgVDX/OpTEIot2DPwgVk+7PuQqUtXWGTutTlTwXJBSjvz1Zlq3i8sMu36zIh95fJWGnefPn1YsmQJL774IvPnz6ewsJCFCxdil9spInEnjNSJWemw/6iV0P0HoW2o63lKQWgr9rnHF45mJoeNmRYet9/vZ/ny5dx3332kpKTw8MMPM2TIECW+FYnEgc9hWV+ocwds4q6GDtfD+seh5wnmvat+Z+qHPjomSN+WC4atVdJ5m4ivwCdB+Xw+Xn31VaZOnUqXLl14+OGHOeuss2I9LJG4sG9POVnLTsAi+F7cmNngcMAfroW122DYTPjH9BA1Np2pcKk7Pj6oJwH7LnVKxJxOJ5deeinr16/niiuu4JJLLmHUqFGsW7cu1kMTsaXPPvuMWbNmcf755/P9k09hx960kM/MHQcHPdD5Zrj8t/C7cSGCHpjqDQp6tqEZXwKrrq5m7ty5PPbYY1x44YUUFRXRvXv3WA9LJGZqa2tZtWoVS5YsYcmSJbjdbkaMGMGIESMYPHgwrm1z4zN1okREgS8J7N+/nyeffJLZs2dz2WWXcf/993PiiSeGfjCUeN1zlaSye/duli1bxpIlS1ixYgW9evU6HOz69u3bcC+8pgIWd4nuQRQr3Rxia+ksUhI2Bb4k8u233/LII49QXFzMddddx7333kuHDh0i6yRKBTklgdjsA5Df76ekpOTwrG79+vWcf/75jBgxgmHDhnHCCScE72DtFFNaKEjasrBZmea6Up8Zze9LokaBLwl99dVXPPjgg7z22mtMmjSJ2267DZfLFfyhQAU5G2NlAP5GC3JKgrDZB6CDBw/y97///XCwS0lJYeTIkQwfPpyBAweSlhZ67+6wKFVnwGGZxBTD18f+mpU0oMCXxD777DMeeOAB3n33XaZMmcJ1113X+DeIBgU5I/gUbGWa3KOHCnJKArDRB6AdO3bw5ptvsmTJEt555x1OP/30w0uY+fn5zbvOE6V6fDHJIiUhKfAJH3/8MVOmTGHjxo1Mnz6dsWPHYlmHLvLqG4DUi/EHIJ/Px5o1aw7P6rZu3crQoUMZMWIEQ4cOJTs7yjNLfeBLWAp8ctiqVauYPHkye/bsYcaMGYwaOQzHskIt+YRisz2uFhGjD0AHDhxgxYoVLFmyhKVLl5KdnX14VnfOOeeQktLCf88RzXAzAZ8ph1Y4LTH/rScIBT5pwO/3s2zZMu677z5uG7SLq/pXYBGFRNiJtslvsz2uFtXKe15lZWWHZ3WrV6/m7LPPZsSIEQwfPpzc3Nym//7NUVNhSguVFZuE04425s/j94K/9oj/3uPj/793ElDgk0b5Du7G91oXUqgN2u7l1VC0CLaXwwnHQfENcF5+gMaJcKzbRntcraaFTznW1dXxj3/843CwKy8vZ/jw4YwcOZIhQ4bQtm3b5v++0ZQMM/wEp8AnjdswM+RF3hUlcO3v4ZVboH8ufL3XvN8lUFyzMkxi7oK7oz7cVpGMez415bC4a4N7bXPeguL3oORLuPxsKL7RvO+pgyvmwJovYNu38PcpMKigkT6tdPYMXMeyt//FkiVLWL58OTk5OYeXMPv164fTqaRS0nL0MUUaF6IgJ8C0hfDAaDirp/l5wIBXr74gZzwGvubscXmrzDLh8n7xd8inkYrkJ3WA+0fBXz81qbuO9KM8uP2ncMkzgbusrvbwm5sLKKn7CSNGjGDmzJl06dIl6kMXCUSBT44VRkFOrw/WlJnq0z3ugGoPjOoHM6+AjGArevUFOeNpacjrMTO9ph7sAPOcp8L0E0+HfBr5ADT6TPN1TRl8VfHd+6kpJugBWEFuEqS38fHrcbk4R74e5cGKhEfrCXKsMApy7twHtV549UNYNRXWPgIfb4UZi0P0HY8FOUuKzPJmcw52gHm+aofpLx6E8QGoqZzuUlUkl5iJo4/d0mrCKMhZP6u75UI48VDWszuGmcD30KWBn3MfrObXd99OTUZPOnfuTKdOnQ5/rf9x27Zt7VNLsKbcHGQJkLsx0H5XQN4q2PQE5N9h/0M+7q34nW1w+Dyh20aq/gOQ6tNJDCjwybGsdCD47KaDC7pmm7pk9cKJVWmpbTjr3EGU7nKwe/dutmzZwu7du9m1axe7d+9m9+7deDyegEGxsfeysrJaLlA2ssd1pGD7XYE5zNH4Vtzr9Pv9HDhwgIqKirBe5eXldErdyV9+6ea4zBYYkCqSSwwp8MmxXDngC36NAWDcQJj9Fgz9AbRJgSeXwYjTgz+T4vQxasztQff4Dh48eEwwrP/x5s2bj3mvrq4uaIA8+tdcLlf4gTLEIZ9A+11BNeOQj8/nY9++fREFsIqKCvbs2UN6ejrZ2dmNvk444QQKCgoavNcpfR/t/t9PwBu4InmT+b2HPmCJtD4FPjmWMwWycmH/xqDNpo6Cbw9Ar7sgvQ1cOgCm/CxE32EU5MzIyKBbt2506xbe6ceqqqpjgmH9140bNzb4tV27duH3+8OaSXb6XgdyDpQGme81nb/yc8p3fUPF3v0RBbF9+/aRlZUVMIB9//vfp0+fPnTs2LHB+x06dCA1NcJ7hL46WHPsB6A6r3l5feZV7YEUy7xqaqH+gpSnzvxaWptGVgP8teYDlkgM6B6fNC6Me3wRs0lBTrfbHTBQHvnjDO8Olk78mqwwJib3/8nM+ELu8R1SWQ0DH23Hfn/ngEHs6FfHjh1p3759y6fpOtKSgmM+AE1faJIWHGnaaJj+c8i5zdzhO9IXT0FOp6P6bVcAI9ZHfbgi4VDgk8apICfsXYf/rXNx1O0P2TTSwOdPaYvjwn9A+9OaOcgWlsAfgCR56TqDNC4t26TasqJ0ssHKNMl74yXoAVjpOEIc8mkqh98XH3tcuROAaH829pucliIxosAngRVOM6m2HMGvNoTksEw/hdOiM67WEsYhnzqv2cc6cr+rLpxYGS97XPoAJAlIgU8Cs1JNfsnUbPxNDX715WgGr4yfbCX16g/5BDFjMWSMg0ffgBc/MD8OeYkfwjrkYxvJ/gFIEo72+CQ093YO/GUAlmcnmakR/HOJ5+TM9bTHZaggsSQQzfgkpAO+DvxgspPy711p9qWsjOAPWJmmXf4kk5cynr/RaY/LcHUzQSure+TLnlameU5BT2xCgU9Cmj59OoMGX8j3RzxvTmUWFpnj6M5UsFyQ0s58daaa9wuLTLs+M+JvefNo2uP6jqsbDFsHebcn3wcgSSha6pSg1q1bx+DBg1m3bh2dO3du+IvJUpCzlSuQxwVVJJc4psAnAfn9fgYNGsSYMWO46aabYj2c2NIeV2DJ8gFIEoaWOiWgF198EbfbzfXXXx/rocSe9rgCc6aYKgvtTzNfFfTE5jTjk0bt3buXgoICFi9eTP/+/WM9HPvwekw9vc2zAEfw055WJuAze3qF0+J/eVMkQSjwSaNuvfVWampqmDdvXqyHYk/a4xKJWwp8coyPP/6YoUOHsmHDBjp27Bjr4dif9rhE4ooCnzTg8/k499xzmTBhAtdee22shyMiEnU63CINFBcXAzB+fJxdsBYRCZNmfMkmyLJcRUUFBQUFLF26lDPOOCOmwxQRaSkKfMmgphxK50PZAqgsPXS60AK84PMcPohxx9z1eMhizpw5sR6xiEiLUeBLZBEcvfc60qn1VEP+HaT3e8RUZhARSUAKfInKvR3eHgJVO8BbFf5ziVBRQUQkCAW+RKT0WiIiAelUZ6LxesxMr6lBD8xzngrTT4gK5CIi8UaBL9GUFJnlzeZUEQDzfNUO05+ISALRUmciqSmHxV3NVQVgzltQ/B6UfAmXnw3FN5pmG76Cq56F0p3m5z88BZ65Cgq6NtKnlW5q6yntlogkCM34EknpfMBx+KcndYD7R8H4gQ2bndQBXr0NKp6Db+fBRWfAmIA3GBwmJ6WISIJQ4EskZQsaXFkYfSaM6gcdsxo2a++CnE7gcIDfD5YTPt8ZoE/vQZOIWUQkQSiTbqLw1ZnL6RFofx1UVoPPDw/+PEjDys9N/0q8LCIJQN/JEoV7q8nI4vOE/cje34O7Gp5fBSd/L0hDRxvTf9sezR2liEjMaakzUXirMWnIIuNKhxvPN4dddu0L0MhhHT4wIyIS7xT4EoWVDjTtCoPPD1U1sGNPgAZ+76H+RUTinwJfonDlHHPZvM4L1R7w+syr2mPeW1ECH2817+2vgjtehA4uOPWkAH37a03/IiIJQHt8icKZAlm5sH/j4bdmLIaiRd81efEDmDYaeneFW56HryogIxX658LyeyE9UF7qrB462CIiCUMX2BPJhplQMi1oFYaIWRlQ+CAU3BW9PkVEYkhLnYkkdwIQ7c8xfshVNXYRSRwKfIkkLRvy7jClhaLByoT8O5WuTEQSipY6E43XA0tPg8qy5iWqdliQ1R2Grz9UsV1EJDFoxpdorFRTRDY12wSvpqivxzd4pYKeiCQcBb5E5OpmishmdY982dPKNM+pCK2IJCgFvkTl6gbD1kHe7ebyuZURvL2VadrlTzLLmwp6IpKgtMeXDGoqTGmhsmKTcNrRxixn+r3mcnpWD+g+zpze1EEWEUlwCnzJxldnEk57q80Mz5Wjy+kiklQU+EREJKloj09ERJKKAp+IiCQVBT4REUkqCnwiIpJUFPhERCSpKPCJiEhSUeATEZGkosAnIiJJRYFPRESSigKfiIgkFQU+ERFJKgp8IiKSVBT4REQkqSjwiYhIUlHgExGRpKLAJyIiSUWBT0REkooCn4iIJJX/D3T6hE1PvAlJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/home/petri/Kurssit/AI/AI_Book/_build/jupyter_execute/blockdiag_3_0.png" } }, "output_type": "display_data" } ], "source": [ "rg=nx.random_tree(15)\n", "nx.draw(rg, with_labels=True, font_weight='normal', node_color='orange', node_size=500)" ] }, { "cell_type": "markdown", "id": "813e4285", "metadata": {}, "source": [ "### Knowledge database as a graph\n", "\n", "```{figure} figures/holmes.svg\n", "---\n", "width: 300px\n", "align: center\n", "name: fig:holmes\n", "---\n", "\n", "Holmes problem: Infer the probability of hypothesis H (burglary) in case of unreliable evidence G and W, through an evidence S.\n", "```\n", "\n", "Example: Mr Holmes receives a phonecall from Dr Watson who claimes that heard the burglar alarm from Mr Holmes home. Holmes knows that Mr Watson can be making practical jokes sometimes, so he will first call to his another neighbour Mrs Gibbon, to ask if she has also heard the alarm. Mrs Gibbon has however a small hearing problem and bad memory, so this evidence is not perfectly reliable as well. What is the probability that there is actually a burglary in Mr Holmes home?\n", "\n", "Represeting the data of unreliable evidence as a graph is rather natural for humans, according to Pearl.\n", "The uncertainties can be expressed as probabilities, and inference can be made using probabilistic reasoning with the help of Bayes rule. One form of this probabilistic reasoning are the Bayesian Networks.\n", "\n", "The probability of the burglary alarm to observe the burglary, and play the sound is given by conditional probability:\n", "\n", "$$\n", " P(S | B) = \\frac{P(S,B)}{P(B)},\n", "$$\n", "\n", "where $P(S,B)$ is the probability of both burglary and alarm sound to happen at the same time, and the p(B) is the probability of the burglary in general, so called *a-priori* or prior probability. \n", "\n", "The probability of the burglary (B) in case of alarm sound (S) can be given respectively\n", "\n", "$$\n", " P(B | S) = \\frac{P(B,S)}{P(S)},\n", "$$\n", "where $P(B,S) = P(S,B)$ and $P(S)$ is the probability of the alarm sound to happen in general. \n", "The famous Bayes inversion rule can be used as follows:\n", "\n", "$$\n", " P(B | S) = \\frac{P(S|B) P(B)}{P(S)}\n", "$$\n", "\n", "This formula is particularly interesting, since it provides a method for updating the probability of the hypothesis (Burglary, B) when finding out new evidence (Alarm sound, S).\n", "\n", "It may be interesting to compare the probability of the hypothesis to the probability of the complement, the probability of that event not happening. Mathematically it would mean:\n", "\n", "$$\n", " \\frac{P(H|e)}{P(\\neg H|e)} = \\frac{P(e|H}{P(e | \\neg H)} \\frac{P(H)}{P(\\neg H)}\n", "$$\n", "\n", "Defining prior odds as:\n", "\n", "$$\n", " O(H) = \\frac{P(H)}{P(\\neg H)} = \\frac{P(H)}{1-P(H)}\n", "$$\n", "\n", "and likelihood ratio\n", "\n", "$$\n", " L(e|H) = \\frac{P(e|H)}{P(e|\\neg H)}\n", "$$\n", "\n", "the posterior odds\n", "\n", "$$\n", " O(H|e) = \\frac{P(H|e)}{P(\\neg H | e)} = L(e|H) O(H)\n", "$$\n", "\n", "Thus the strength of belief in hypothesis H, based on the previous knoledge and new evidence e, is given by the product of the likelihood ratio $L(e|H)$ and prior odds $O(H)$. The prior odd $O(H)$ provides predictive support by the previous knowledge alone and the likelihood ratio $L(e|H)$ provides diagnostive support, based on new evidence observed.\n", "\n", "By using this formula, it is possible to chain the calculation of hypotheses to make the final conclusion. The solution for the Bayesian network as a whole is still rather comples, but there are algorithms which can solve it in polynomial time. \n", "\n", "\n", "\n", "#### Graph Search methods\n", "\n", "When planning actions using a graph, a graph search algorithm is often used.\n", "\n", "- Breadth First\n", "- Depth First\n", "- Heuristic function\n", "- Greedy algorithms\n", "- Hill climbing\n", "- Optimisation\n", "\n", "## Learning\n", "\n", "- On-line learning\n", "- Machine learning\n", "- Deep learning\n", "\n", "\n", "- Markov model\n", "- Neural network\n", "- Deep learning\n", "\n", "## Machine learning\n", "```{figure} figures/DecisionBoundary.png\n", "---\n", "width: 400px\n", "align: center\n", "name: fig:blockdiag_graph\n", "---\n", "\n", "The classification of samples using a Machine Learning method. The information about the decision boundary is encoded in the parameters of the machine learning algorithm, and they can be learned from example data.\n", "```\n", "\n", "```{figure} figures/decisionTree.svg\n", "---\n", "width: 800px\n", "align: center\n", "name: fig:blockdiag_graph\n", "---\n", "\n", "Decision tree is one method for implementing machine learning methods. Th threshodls of each decision are learned from the data.\n", "```\n", "\n", "## Neural networks\n", "```{figure} figures/mlp.svg\n", "---\n", "width: 400px\n", "align: center\n", "name: fig:blockdiag_graph\n", "---\n", "\n", "Multi-layer percepton network, a neural network, is one way for storing knowledge. The weights of each connection and the thresholds related to each neuron can be learned from the data.\n", "```\n", "\n", "```{figure} figures/cnn.png\n", "---\n", "width: 800px\n", "align: center\n", "name: fig:blockdiag_graph\n", "---\n", "\n", "Convolutional neural network for recognizing birds from a picture.\n", "```\n", "\n", "\n", "## The block diagram of AI concepts\n", "\n", "```{figure} figures/BlockDiag.svg\n", "---\n", "width: 800px\n", "align: center\n", "name: fig:blockdiag_graph\n", "---\n", "\n", "The block diagram, or visual table of contents of AI. The blue underlined labels are links to the corresponding course material.\n", "```\n", "\n", "\n", "## Read more\n", "\n", "> Programming is a superpower\n", "\n", "" ] } ], "metadata": { "jupytext": { "formats": "md:myst", "text_representation": { "extension": ".md", "format_name": "myst", "format_version": "0.8", "jupytext_version": "1.4.1+dev" } }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.2" }, "source_map": [ 13, 168, 204, 251, 258 ] }, "nbformat": 4, "nbformat_minor": 5 }